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Abstract—The problem of scheduling and control of appliances
for Home Energy Management (HEM) is considered. A multi-
time scale and multi-stage stochastic optimization framework
is proposed for the control of the Heating, Ventilation, and
Air Conditioning (HVAC) unit, the charging of Plug-in Hybrid
Electric Vehicle (PHEV), and the scheduling of deferrable load
such as washer/dryer operations. Formulated as a constrained
stochastic optimization that incorporates thermal dynamics, tem-
perature measurements, and the real time pricing signal, a
model predictive control algorithm is proposed that minimizes
customer’s discomfort level subject to cost and peak power
constraints.

Index Terms—Home energy management, model predictive
control, smart grid, demand response, HVAC control, PHEV
charging.

I. INTRODUCTION

W
E consider the problem of optimal control and schedul-

ing of appliances by a Home Energy Management

(HEM) device. The basic premise of this work is that the

HEM device at the customer site serves as a gateway in the

interaction with either the utility or an energy aggregator. In

the context of a hierarchical demand side management (DSM)

system, for example, an energy aggregator interfaces with a

Retail Electric Provider (REP) and a pool of customers. In

a hypothetical DSM operation, as illustrated in Fig. 1, the

aggregator secures a contract with the REP and promises an

aggregated load profile among its customers. The aggregator

incentivizes its customers by a certain pricing scheme to fulfill

the promised load profile. The result is that each customer

provides the aggregator with its own load profile that specifies

the maximum power consumption. In the event of required

load shifting, the aggregator may send requests of changes in

individual load profiles, and the HEM device of the customer

can respond accordingly.

An essential function of an HEM device is to manage

energy consumption based on the load profile promised to

the aggregator, the pricing signal from the aggregator, the

sensing devices that measure the home environment, the

desired comfort level, and budget constraints. The customer

may specify a certain monthly energy expenditure and expect

the HEM device to optimize intelligently energy usage that

fits the customer’s specific lifestyle.
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Fig. 1: A hierarchical demand side management

system.

A. Summary of Results

The main contribution of this paper is a computationally

tractable multi-scale multi-stage optimization framework that

integrates various functionalities of HEM. The multi-scale and

multi-stage nature of the problem arises naturally in home

energy management. For example, the thermal dynamics of

a residential home may be modeled the minute level, the

load profile for the maximum power consumption is specified

at the hourly level, and the targeted energy expenditure is

given at weekly or monthly level. The scheduling of various

devices also involves multiple stages as information required

for scheduling arrives at different time, which affects the time

when scheduling decisions are made. Unfortunately, finding

the optimal scheduling policy of a multi-scale multi-stage

stochastic program is intractable in general.

We propose a hierarchical approach that separates the prob-

lem into slow and fast scale optimizations; the former provides

the hourly power (energy) budget for different devices whereas

the latter determines control signals at the time scale that

matches to that of the thermal dynamics (minute level). The

proposed approach also separates continuous variable from

integer variable optimizations.

To provide power allocation at the slow time scale, the

optimization involves a quadratic optimization with linear con-

straints, which can be solved easily using standard numerical

techniques. At the fast time scale, because of the on-off nature

of HVAC control, the problem becomes a stochastic integer

program where a suboptimal heuristic approach is proposed.

The underlying principle for the multi-stage stochastic

optimizations at the two different time scale is the Model

Predictive Control (MPC) [1]. In particular, MPC forecasts the

state of the physical plant into the future and makes tentative

future decisions optimally based on such forecasts. The key of
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MPC is to excersize only the immediate tentative decision and

refine its forecast as it collects more information. MPC does

not lead to the optimal solution in general, but the strategy

is widely used in practice; it is computationally tractable and

often offers satisfactory performance.

B. Related Work

The literature on home energy management is expanding

rapidly, but few published work provides an integrated ap-

proach to loads of different types, addressing design tradeoffs

among comfort requirements and peak power and budget

constraints. Authors of [2] proposed a three-layer control

mechanism and use Tabu search to find a feasible solution.

In [3], particle swarm optimization is used to find the optimal

solution for coordinately scheduling multiple energy resources.

These approaches require accurate prediction of the energy us-

age of future. In [4], uncertainty consideration is incorporated

into the optimization, but the control is an open loop strategy

without using the real-time measurement.The authors of [5]

considered a similar scheduling problem as one treated in this

paper. The emphasis in [5] is on the tradeoff between cost

and waiting time in a multi-home setting. The work presented

here, in contrast, focuses on energy management problem

within a single home with a design tradeoff between cost and

comfort level subject to budget and power constraints. It is

also significant that the scheduling problem considered in this

paper involves thermal dynamics that dictates the formulation

of multi-stage stochastic dynamic optimization. The thermal

dynamics is not modeled in [5] and the optimization involved

is considerably simpler.

The MPC strategy adopted in this paper goes back to [6],

[7], [8]. In [6], an algorithm referred to as LQG-MPC was

proposed to deal with the state and control linear inequality

constraints. In [7], [8], the Quadratic Dynamic Matrix Control

is used to solve nonlinear process optimization with state

estimation.

II. PROBLEM FORMULATION AND HEM ARCHITECTURE

We present in this section the basic system model and

the overall solution architecture. In dealing with models in

multiple time scale, we adopt the notation that x[t] stands
for the representation of signal in the fast time scale (say in

minutes) whereas xn represents the signal in the slow time

scale (e.g., for hourly measurements).

A. Load classes and characteristics

We consider three types of load in this paper: The first is the

HVAC unit which draws power pHVAC[t] and drives the indoor

room temperature xin[t] following a thermal dynamic model

given in Sec. II-B. The control of HVAC directly affects the

quality of service and is subject to peak power and budget

constraints. The quality of service is defined by the level of

discomfort measured by the deviation of room temperature

from the desired setting.

The second type of load is the charging of PHEV. This is

a deferrable and interruptible load. By preemption we mean

that the charging of the PHEV can be suspended temporarily

and resumed at a later time. We assume that the charging can

start at TA and must be completed by TD. The control strategy

affects the comfort level of the customer indirectly through the

constraints on peak power and available budget. We assume in

this paper that the PHEV must charged to a certain level by the

deadline, putting this job at a higher priority over minimizing

the discomfort level.

The third load type is deferrable and non-interruptible load.

The example considered in this paper is the scheduling of

washer or dryer for which the the start time of the load can be

moved based on power consumption and pricing information.

Here the control is the start time of the load within the

earliest start time TE and the latest start time TL. The load

characteristics (power drawn from the grid) is assumed to be

known. As in the control of PHEV charging, the schedule of

deferrable load is a hard requirement and it affects the level

of comfort indirectly.

B. MIMO Thermal Dynamics

We assume a multi-input and multi-output (MIMO) model

that specifies the indoor room temperature evolution xin[t] as
a function of the outdoor temperature xout[t] and the power of
multiple HVACs pHVAC[t]. As a generalization of the standard

dynamic model for residential air conditioning, the model is

a stochastic linear difference equation given by

Φ(A,G,C) : x[t+ 1] = Ax[t] +GpHVAC[t] + v[t]
y[t] = Cx[t] + w[t]

(1)

where the state vector x[t]
∆
=(xin[t], xout[t]) consists of the

indoor temperature xin

t and outdoor temperature xout[t]. The
multiple HVACs are controlled via vector pHVAC[t]. The mea-

surement is denoted as y[t]. The model includes process noise
v[t] and measurement noise w[t], both assumed to be zero-

mean white Gaussian noise with known covariances.

We have performed validation of the above model using

real data collected from a residential home. The measurements

include indoor, outdoor temperature, and HVAC power usage.

Model parameters are extracted by the least squares method

using one month of measurements. The validation of the model

is performed using data in two different months. The modeling

and prediction mean squared error are below 0.1 degree [9].

C. Control Policy, Cost, and Figures of Merits

A control/scheduling policy π is a power allocation to the

three types of loads (pπ
HVAC

[t], pπ
PHEV

[t], pπ
Def
[t]) at the fast time

scale (minute intervals) using measurement Y[0:t) up to t.

Let P be the set of admissible policies that satisfy the

scheduling constraints including the required start-end time for

charging and start time for deferrable loads. Of particular im-

portance is the the vector of aggregated hourly load constraints

(P1, · · · , PTh
). Specifically, given a control policy π ∈ P ,

let pπ[t]
∆
=pπ

HVAC
[t] + pπ

PHEV
[t] + pπ

Def
[t] be the aggregated power

consumption in interval t. The hourly power consumption
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limits mandates that

pπi =
∑

t in hour i

pπ[t] ≤ Pi, i = 0, 1, · · · , Th.

Given the price signal z[t], the cost of a policy π is give by

C(π)
∆
=
∑

t

z[t]× pπ[t]. (2)

We measure the (lack of) quality of a policy π ∈ P by the

discomfort level by

D(π)
∆
=Eπ(

∑

t

‖xin[t]− d[t]‖2), (3)

where xin[t] is the indoor temperature and d[t] the desired

temperature settings. Given a daily budget constraint B, the
optimal policy is the solution of the following constrained

optimization

min
π∈P

D(π) subject to C(π) ≤ B. (4)

D. HEM Control Architecture

We propose a multi-scale and multi-stage control architec-

ture shown in Fig. 2 with detailed functionalities of the slow

and fast time scale optimizations defined in Sections III-IV.

The architecture is based on the principle of model predic-

tive control (MPC). Sensor measurements (indoor and outdoor

temperatures) y[t] are taken at the fast time scale and a Kalman
filter is used to predict future thermal dynamic states x̂[t+k|t].
The slow time scale MPC uses state prediction and pricing

signal z[t] to allocate power budget to the three types of load
at the slow time scale, and the fast time scale MPC determines

the detailed control at the fast time scale.

Slow time 
scale MPC

Fast time 
scale MPC

Kalman
Prediction

predictionmeasurement

current time current time

pricing

sensor
measurement

pDef
n

pHVAC
n

, pPHEV
n

pHVAC[t]
pPHEV[t]
pDef[t]

t
t

x̂[t + k|t]

y[t]

y[t]

pHVAC
n

(slow scale)

pHVAC[t]

z[t]

Fig. 2: Multi-scale HEM architecture.

III. SLOW TIME SCALE STOCHASTIC OPTIMIZATION

A control policy π is a mapping from measurements Y0,n =
{yn, yn−1, · · · , y0} to decision variables (p

HVAC

n , pPHEV

n , s) where
s is the start time of the deferrable load. Note that, once the

start time is determined, the power allocation to the deferrable

load at the fast time scale is determined.

The goal of the slow time scale optimization is to mini-

mize the discomfort level subject to power limit and budget

constraint. To this end, we consider the following multi-stage

stochastic optimization:

minimize
∑Th

t=0 Eπ‖x
in

t − dt‖
2

subject to (xt, yt) ∼ Φ(A,G,C)
TE ≤ s ≤ TL

pDef

t = {
P Def

rate
if s ≤ t < s+ d

0 o.w.

0 ≤ pPHEV

t ≤ P PHEV

max∑t=Th−1
t=0 pPHEV

t = Q
pPHEV

t = 0 if t < TA or t > TD

0 ≤ pHVAC

t + pPHEV

t + pDef

t ≤ Pt∑Th−1
t=0 zt(p

HVAC

t + pPHEV

t + pDef

t ) ≤ B

(5)

where xin

t , the indoor temperature vector, is part of the state

evolution (xt, yt) ∼ Φ(A,G,C) specified by the stochastic

thermal dynamic equation (1). For simplicity, we will assume

that the deferrable load draws constant rated power P Def

rate
.

IV. FAST TIME SCALE STOCHASTIC OPTIMIZATION

We now consider the scheduling and control at the fast

time scale. The principle established for the slow time scale

optimization applies here as well, except that we now deal

with scheduling with integer decision variables.

Due to space limitation, we focus on the control of HVAC at

the fast time scale. The most widely used control strategy is the

on-off control of HVAC where the heating and air conditioning

is turned on or off based on the desired temperature set

point and actual temperature measurements [10]. In practice,

considerations of equipment longevity may put additional

constraints on how frequent the switching between different

states can be.

Within the class of on-off controls, we formulate the prob-

lem as choosing the on-off switching time subject to minimize

the discomfort level and subject to the hourly power budget

constraint. Once the switching time is chosen, the control

of HVAC can be implemented through artificially choosing

the desired temperature set points without actually install a

different controller.

The fast time scale control of HVAC starts by calculating

the number of on periods within each hour, assuming that

the HVAC uses the same power level when it is turned on

and schedule the on periods by a stochastic optimization. In

particular, given the total power budget pHVAC

k in the kth hour,

the number of on periods is given by Nk = [pHVAC

k /P HVAC

rate
].

The allocation of the on periods is formulated as a stochastic

optimization with the binary action space.

V. SIMULATIONS

We present preliminary simulations to illustrate the pro-

posed approach. Three types of loads are included in the

simulation. As a deferrable load, the dryer is assumed to

last for two hours, assumed starting no earlier than 4PM and

completing no later than 6PM. We also assume that the PHEV

is available for charging between 8PM and 8AM. The charing
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rate is nonnegative which implies it cannot discharge. A peak

power constraint is applied by the HEM as well as a total

budget constraint.
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Fig. 3: Power Policy Example: Indoor Temp, Dryer and
PHEV Charing, HVAC, Total Energy and Peak
constraints, Price

Fig. 3 illustrates on resulting control policy. Given the

tight schedule deadline for the deferrable load, the optimal

scheduling for the dryer was between 4PM-6PM. Note also

that the PHEV charging schedule took advantage the price

advantage. Given the consumption limit, there are several

periods that the power limits became binding. As a result,

there were two hourly intervals that less power allocation to

the HVAC were made, which led to deviation from the desired

temperature.
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Fig. 4: Performance comparison between LQG-MPC and
Multi-scale Algo

We conducted a comparison between the proposed approach

and a benchmark solution. Given that there is no existing

approach to HEM that involves different types of services

considered here, we focused on the scheduling of HVAC under

peak power and budget constraints. In particular, we compared

with an LQG-based MPC strategy (thus referred to as LQG-

MPC) originally proposed in [6], which can be viewed as

an interpolation between LQG and an open loop solution.

The performance bound is obtained by knowing the future

perfectly.

The plot of discomfort level (measured in terms of Predicted

Mean Value(PMV)) against energy cost is shown in Fig. 4

where the proposed approach performed better than LQG-

MPC. At the PMV value of 1.5, the saving of the proposed

approach over LQG-MPC was about 20%. While the MPC

spend 8% more than the optimal condition. We noted that,

when the budget constraint was tight, the difference between

the three approaches was small, which can be explained by

the fact that both strategies have limitted power available for

scheduling.

VI. CONCLUSION

We presented in this paper a multi-scale multi-stage stochas-

tic optimization framework for home energy management that

involves loads with different characteristics. With HEM device

as an interface with the energy aggregator through real-time

pricing and economically incentivized load profile, our goal

here is to provide a conceptual decomposition of the opti-

mization problem into computationally tractable subproblems.

We have made a number of simplifying assumptions that

need to be justified and studied further for practical imple-

mentations. The linear thermal model needs to be validated,

and the assumption that model parameters are known needs to

be replaced by online parameter estimation and tracking algo-

rithms. The impact of the economically based scheduling on

the life-time of appliances, especially in the context of PHEV

charging and bang-bang HVAC control, warrants further study.

Nonetheless, many of the modifications required to circumvent

the above simplifying assumptions can be incorporated into the

proposed optimization framework.
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