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Abstract—The problem of modeling and stochastic optimiza-
tion for home energy management is considered. Several dif-
ferent types of load classes are discussed, including heating,
ventilation, and air conditioning unit, plug-in hybrid ele ctric
vehicle, and deferrable loads such as washer and dryer. A
first-order thermal dynamic model is extracted and validated
using real measurements collected over an eight months time
span. A mixed integer multi-time scale stochastic optimization is
formulated for the scheduling of loads of different characteristics.
A model predictive control based heuristic is proposed. Numerical
simulations coupled with real data measurements are used for
performance evaluation and comparison studies.

Index Terms—Home energy management, model predictive
control, demand response, temperature control, stochastic op-
timization.

I. I NTRODUCTION

T HE idea of automated temperature control goes back
over a hundred years when Warren Johnson invented a

complete multi-zone temperature control system. The basic
principle of temperature control has stood the test of time and
can be applied to the general problem of home energy man-
agement (HEM) where energy is delivered to different types
of load. The objective of HEM is to use energy efficiently for
a comfortable and enjoyable living and working environment.
Underlying this objective is the fundamental tradeoff between
costs and quality of services.

The advent of “smart grid” will likely advance the state
of the art of HEM in multiple dimensions. Some of the
most important characteristics of HEM in a smart grid era
include the extensive use of sensing devices, the optimal
and automated management of different types of load, the
integration of renewable energy and storage, and the ability
to respond to dynamic prices.

In this paper, we consider scenarios in which a HEM device,
serving as a control center, interfaces with the consumer and
an electricity retail provider. Through the HEM device, the
consumer participates in an economic demand response by
managing energy consumption in response to dynamic pricing.
The HEM device can also be used in an emergency demand
response program where the retailer sets limits on power usage
at times when the consumption needs to be curtailed.
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A. Summary of results and contribution

The main contributions of this paper are in the modeling and
optimization in HEM. On modeling, we present an empirical
study aimed at extracting and validating a simple linear
model based on the first law of thermal dynamics originally
considered by Bargiotas and Birdwell [1]. In particular, we
obtain model parameters using data collected over a period of
eight months in Arizona and Oregon, two states with different
weather conditions. The residential houses from which data
are collected also have different heating and air conditioning
equipments. While there is extensive literature on the thermal
dynamic models of large facilities, there is limited resultin the
open literature on models for suburban residential homes using
data of relatively large size. Our study shows that the linear
time invariant state-space model holds well in one locationin
a 24 hours horizon whereas, in another location, the model
holds well only in a two hours horizon. This suggests that, in
general, a model used by a HEM system needs to be adaptive
and model parameters need to be tracked, albeit at a relatively
slower rate than the typical minute level sensing rate.

On optimization in HEM, we propose a stochastic and
dynamic optimization framework with several features that,
to our best knowledge, are new or have not been emphasized
in existing approaches in the literature.

First, we formulate a constrained optimization where the
consumer dissatisfaction measured by temperature deviation
is minimized. The optimization is subject to maximum power,
energy expenditure (monetary cost), and thermal dynamic
constraints. The maximum power constraints are usually not
considered in existing formulations. Making this constraint
explicit allows the HEM device to respond not only to pricing
signals but also to retailer imposed interruptions or load
shedding requests. It can also be part of a hierarchical demand
response system where an individual home receives power
allocation as part of a community based demand response
optimization [2]. The consumer expenditure constraint is also
not part of most existing approaches. In our formulation,
the HEM device optimizes consumer satisfaction given, for
example, a monthly budget for energy consumption. This is
a key to emancipating the consumer from real-time decisions
on energy usage while removing the potential cost overrun at
the end of a typical budget cycle.

Second, the proposed optimization framework operates in
multiple time scales: sensing, control, and parameter estima-
tion at a fast time scale (minutes), allocating energy expendi-
ture to individual loads at a slow time scale (30 minutes to
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an hour), satisfying cost constraints in even slower time scale
(weeks or months). The partition of the energy management in-
to slow and fast time scales significantly reduces computation
complexity. To this end, we use the slow-time scale optimiza-
tion to allocate energy expenditure to individual appliances.
At the fast time scale, we perform separate optimization for
each load class.

Third, because most existing heating, ventilation, and air
conditioning (HVAC) units implement on-off controls, the
underlying optimization involves integer decision variables.
Finding the optimal on-off control sequence at the fast time
scale does not have a computationally tractable solution. We
show that, if the indoor-outdoor temperature difference does
not vary significantly at the fast time scale, the problem of
optimal on-off control can be approximated by the shortest
path problem, which can be easily implemented by standard
techniques.

B. Related work

The literature on home energy management is extensive
and expanding. We focus here related work on the modeling
and control aspects of HEM. Studies on thermal dynamic
models for residential and commercial buildings date from
1978. The work reported in [3] used a convenient set of
equivalent thermal parameters for residential townhouse.Our
approach is based on the work of Bargiotas and Birdwell [1]
who developed a simple linear dynamic model that involves
a residential air conditioner. The power consumed by the air
conditioner is the control input and outdoor temperature the
exogenous random input. Our work in this paper focuses on the
estimation and validation of this model for a modern HVAC
system in a residential home.

There is a substantial literature on HEM control. In [4],
the authors proposed the architecture of HEM system in the
framework of spot price and formulated the control problem
without maximum power constraints. Authors of [5] proposed
a three-layer control mechanism and used Tabu search to find
a feasible solution. In [6], particle swarm optimization was
used to find the optimal solution for coordinately scheduling
multiple energy resources. These approaches required accurate
prediction of future energy usage. In [7], model and envi-
ronmental uncertainties were incorporated into the proposed
optimization framework. The developed control, however, was
an open loop strategy without using real-time measurements.

The authors of [8] considered a similar scheduling problem
as one treated in this paper. The emphasis in [8] was on the
tradeoff between cost and waiting time in a multi-home setting.
The work presented here focuses on energy management
within a single home with a design tradeoff between cost and
comfort level subject to budget and power constraints. It is
also significant that the scheduling problem considered in this
paper involves thermal dynamics that dictates the formulation
of multi-stage stochastic dynamic optimization. The thermal
dynamic was not modeled in [8] and the optimization involved
was considerably simpler. The thermal dynamics were includ-
ed in the HEM proposed for a single home in [9], using a direct

search optimization. It was a single stage optimization which
set the thermostat set points, whereas this work includes direct
control of the HVAC system. In [10], thermal dynamic was
included and a similar concept of multi-scale feedback control
was proposed to manage the temperature and utilization of
CPU. Utilization budget was calculated in slow time scale
to maintain the temperature and in fast time scale CPU was
distributed to tasks to meet the utilization set point.

The MPC strategy adopted in this paper goes back to [11],
[12], and [13]. In [11], an algorithm referred to as LQG-MPC
was proposed to deal with the state and control linear inequali-
ty constraints. In [12], and [13], the Quadratic Dynamic Matrix
Control was used to solve nonlinear process optimization
with state estimation. In [14], the flexible constraint handling
capabilities of MPC were shown and the robust adjustments
were surveyed in [15].

The current paper presents a hierarchical multi-timescale
multi-stage approach to HEM. The two conference publica-
tions [16] and [17] that proceed the current paper include
abbreviated description of the proposed approach and simu-
lations. Additional new material that incorporates renewable
energy source is also included in this journal version.

C. Organization and notations

This paper is organized as follows. Section II discusses the
identification and validation of the thermal dynamic model
based on real measurements collected in the states of Arizona
and Oregon. Section III presents different characteristics of
electricity loads and distributed renewable source in typi-
cal residential house and formulates the overall optimization
problem as a quadratic stochastic programming. In section
IV, we decompose the control problem into two time scales
and propose a MPC based multi-stage multi-scale approach.
Numerical results and comparison are presented in Section V.

Notions in this paper are standard. Because multiple
timescales are involved, we usext for signal x in the slow
timescale andx[t] for the fast timescale counterpart. For
convenience, variables are cataloged below.

NOMENCLATURE

α̂f , ĝf , ĉf Estimated fast time scale thermal parameters
αf , gf , cf Real fast time scale thermal parameters
Af , Gf , Cf Real fast time scale thermal parameter matrix
Â, Ĝ, Ĉ Estimated slow time scale thermal parameter matrix
Âf , Ĝf , Ĉf Estimated fast time scale thermal parameter ma-

trix
x̂[t+ k|t] State prediction given observation by timet
x̂in[t] Predicted indoor temperature
Φ(∗) Thermal dynamic equations
π Scheduling policy
σ Intensity of modeling noise
εm Mean squared modeling error
εp Mean squared prediction error
Y[0:t) Information collected up to timet
B Weekly or monthly budget
dt Slow time scale desired temperature
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Nk Number of working minutes of HVAC planned at time
t

pπ[t] Total power consumption of policyπ within time
interval t.

pπHVAC[t], p
π
PHEV[t], p

π
Def[t] Power consumption in intervalt under

policy π
P Def

rate Power rate of deferrable load
pHVAC[i] Fast time scale power allocation of HVAC
P HVAC
t Continuous time power consumption of HVAC

P HVAC
max Maximum power limit of HVAC

P PHEV
max Maximum power limit of PHEV

pRenew
t Slow time scale power output of renewable resource

Pt Total power limits within hourt
pDef
t Slow time scale power expenditure of deferrable load

pHVAC
t Slow time scale power expenditure of HVAC

pPHEV
t Slow time scale power expenditure of PHEV

Q Desired charging amount of PHEV
s Starting time of deferrable load
T in
t Continuous time indoor temperature

T out
t Continuous time outdoor temperature

TA, TD Arrival and departure time of PHEV
Td Predicted daily average outdoor temperature
TE , TL Earliest and latest starting time of deferrable load
Tf Number of stages in fast time scale optimization (e.g.,

60 minutes per hour)
Ts Number of stages in slow time scale optimization

(e.g.,24 hour per day)
Tw Number of stages in budget allocation (e.g., 7 days

per week)
u[t] ∈ {0, 1} On-off status of HVAC
v[t] Modeling noises vector
v in[t] Fast time scale indoor temperature modeling noise
vt Slow time scale modeling noise
w[t] Measurement noises vector
x[t] Fast time scale state
xin
t , x

out
t Slow time scale state variables, indoor and outdoor

temperature
y[t] Fast time scale measurements
y in
t , y

out
t Slow time scale measurements

z[t] Fast time scale electricity price
zt Slow time scale electricity price
C(π) Economic cost under policyπ
D(π) Temperature deviation under policyπ
R R , αf (x

out[t]− xin[t])
U U , gfP

HVAC
rate

II. M ODEL IDENTIFICATION AND VALIDATION

In this section, we present a first-order difference equation
of the thermal dynamic model based on the work of Bargiotas
and Birdwell [1]. Two data sets from Arizona and Oregon
are described and different methodologies of model fitting are
presented. The techniques used here are standard.

A. Thermal dynamic model

Thermal dynamic parameters vary from house to house, as
well as human activity patterns. An electric heating-cooling

thermal dynamic based upon the energy balance analysis
presented in [1] is used in this paper. The first-order stochastic
differential equation of the continuous temperature stateTt is
stated as follows:

dT in
t = a(T out

t − T in
t )dt+RP HVAC

t dt+ σdvt (1)

wherea is the thermal resistance related to the heat exchange
between the outdoor and the indoor air,P HVAC

t the power rate
of the HVAC, andR the power efficiency. The temperature is
driven by a Wiener processσdvt with intensityσ. The Wiener
process accounts for other heating/cooling sources such as
human activities, refrigerators and dryers, etc.

The discrete-time equivalent equation for the continuous
physical model is given by

xin[t+ 1] = xin[t] + αf (x
out[t]− xin[t])

+gfp
HVAC[t] + cf + v in[t] (2)

whereαf , gf , cf are the essential thermal parameters to be
estimated andv in[t] the system noise, assumed Gaussian and
zero mean.

In a state space form with the possibility of including
multiple HVAC units and multiple sensors, the matrix form
of equation (2) is stated as:

Φ(Af , Gf , Cf ) :







x[t+ 1] = Afx[t] +Gfp
HVAC[t]

+Cf + v[t],
y[t] = x[t] + w[t].

(3)

wherex[t] is the state vector, consisting of indoor temperatures
in different rooms and the outdoor temperature.Af reflects
the heat exchange between rooms as well as the outdoor and
the indoor air.Gf stands for the power efficiency of multiple
HVAC units. y[t] is the measurements of states.v[t], w[t] are
the modeling and measurement noise.

B. Data collection and measurements

Measurements were taken from one house in Arizona and
one in Oregon. In the Arizona case,3 HVAC units were used
to cool 7 rooms. The data included outdoor temperature and
insolation, HVAC power consumption and temperatures of
different rooms. The data were collected every15 minutes
during August to November2011 in Arizona. The Oregon
data were collected similarly from January to April2012.
In this case, a two-stage furnace (high heat and low heat
mode) was used to heat the room. The power consumption
was computed from the cycle time of the furnace. As an
example of typical measurement, Fig. 1 shows the indoor
and outdoor temperatures, the power consumption, and the
particular temperature set-point profile.

C. Model identification and validation
The parameters in model equation (2) can be obtained using

the method of least squares:

(α̂f , ĝf , ĉf ) = argmin
αf ,gf ,cf

(

N∑

t=1

||(xin[t+ 1]− x
in[t])

−(cf + αf (x
out[t]− x

in[t]) + gfp
HVAC [t])||2)(4)
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Fig. 1: Oregon data: Indoor Temp (◦F), Outdoor Temp
(◦F), Set Point (◦F), Power of furnace (kW/h)

where N + 1 is the number of observations used in the
parameter estimation. For time varying models,N should be
large enough to obtain reliable estimates but small enough
for the model remains stationary. In our study, we consider
the cases whereN corresponds to1, 7, and 14 days of
measurements.

The accuracy of the model can be measured by the mean
squaredmodeling error(ME)

εm =
1

N

N
∑

t=1

||(xin[t+1]−xin[t])−(ĉf+α̂f (x
out[t]−xin[t])+ĝfp

HVAC[t])||2.

(5)
The model with estimated parameter using one set of data

needs to be validated. To this end, we use a separate (un-used)
data to test the predicability of the model. Specifically, given
the estimated parameterŝαf , ĝf , ĉf obtained from one data
set, we use a different set of data to test the accuracy of the
one step prediction

x̂in[t+ 1] = xin[t] + α̂f (x
out[t]− xin[t]) + ĝfp

HVAC[t] + ĉf , (6)

The mean squaredprediction error (PE) is given by

εp =
1

N

N
∑

t=1

||x̂in[t+ 1]− xin[t+ 1]||2. (7)

D. Results and observations

We describe in this section a summary of results and
observations, leaving more detailed description in [18] and
[19]. Given differences in weather conditions, heating andair
conditioner equipments used in the residential houses, and
consumer usage patterns, the techniques used for model iden-
tification were slightly different. The general observation was
that the Arizona data appeared to support a more stationary
model whereas the Oregon data suggested that the stationarity

assumption seemed to hold for a relatively shorter time period
and more adaptive modeling strategy seemed to be necessary.

We note that observations presented here are specific to the
set of data used in this work.

1) The Arizona case:For the Arizona data collected during
the month between August and November, we observe that
a stationary within a one-day time horizon appeared to be
adequate. Specifically,96 measurement points (one point every
15 minutes) from previous day are used to extract one set of
thermal parameters. Using this set of(αf , gf , cf ), the outdoor
temperature measurement and the HVAC power, the indoor
temperature of next day is forecasted.

A summary of Arizona data is shown in Table I. It is evident
that, for most rooms, the modeling and prediction errors are
quite small. One particular anomaly is the model fitting for
the extra room which had a large prediction errors as well as
a much greater standard deviation of indoor temperature. One
explanation would be that there was another thermal source
in this room which was not considered in the model. More
extensive results can be found in [18].

TABLE I: Summary results of Arizona data

Room xin
t (◦F) σ

xin
t

εm εp

Living Room 79.1244 1.8073 0.0103 0.0116

Family Room 80.5193 2.5919 0.0249 0.0282

Kitchen 81.8173 2.1409 0.0247 0.0281

Dining Room 79.0615 14.0744 0.1355 0.1480

Office Room 79.8312 9.6645 0.0879 0.0956

Hall 79.2099 1.1447 0.0182 0.0212

Extra Room 83.0398 48.2190 0.4122 29.8200

Ups. Office 78.2068 1.1281 0.0184 0.0199

Ups. bath 77.8422 2.6523 0.0372 0.0412

Thermal parameters of different rooms are summarized in
Table II. Standard deviations of these estimates are relatively
large which indicate that the model is not constant across
time. The non-stationarity can be observed more clearly in
Fig. 2. Thermal parameters, modeling errors and realization
of real temperature and predictions of living room are plotted
respectively. HVAC power efficient factorg varies with time
while the modeling errors are small. An closer look at the real
and predicted temperatures shows that the linear time invariant
model follows the real temperature accurately.

TABLE II: Thermal Parameters of Arizona house
Room ᾱ ± σα ḡ ± σg (◦F/kWh) c̄ ± σc(◦F)

Living Room 0.0083 ± 0.0046 −0.2076 ± 0.1211 0.0216 ± 0.0552

Family Room 0.0127 ± 0.0046 −0.1798 ± 0.1608 0.0062 ± 0.0908

Kitchen 0.0121 ± 0.0048 −0.1997 ± 0.1901 0.0324 ± 0.0894

Dining Room 0.0209 ± 0.0127 −0.5438 ± 0.1768 −0.0047 ± 0.1201

Office Room 0.0168 ± 0.0120 −0.5095 ± 0.2337 0.0176 ± 0.0802

Hall 0.0101 ± 0.0051 −0.3314 ± 0.1787 0.0264 ± 0.0669

Extra Room 0.0474 ± 0.0388 −5.8284 ± 24.6484 0.0709 ± 0.3141

Ups. Office 0.0107 ± 0.0048 −0.2990 ± 0.1214 0.0631 ± 0.0521

Ups. bath 0.0152 ± 0.0070 −0.4435 ± 0.6012 0.0417 ± 0.0820

By looking at the autocorrelation of modeling and prediction
errors we analyze the relationship between errors and time.In
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Fig. 2: Arizona data: Top: daily parameter estimates over
time. Middle: modeling error example. Bottom:
actual and predicted indoor temperatures.

Fig. 3 peaks can be found at every96 lags indicating daily
cycle in errors. A more comprehensive study of daily pattern
may be needed.
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Fig. 3: Arizona data: Autocorrelation of modeling errors

Another important factor in model validation is the Gaus-
sianity of the residue error. Although a rough analysis plotting
cumulative distribution functions (CDF) of errors againstthe
Gaussian CDF appears to endorse a close distribution, a careful
examination using the Q-Q plot in Fig. 4 and Kolgomorov-
Smirnov test indicates that the residues are non-Gaussian.
Details can be found in [18].

2) The Oregon case:For the Oregon data, we can observe
much significant non-stationarity, partly because of the specific
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Fig. 4: Arizona data: Q-Q plot of modeling and prediction
errors

heating system used by the resident. Table III summarizes the
results of house in Oregon. One day fitting one day prediction
methodology worked not well any more. The constantc, which
stands for the un-modeled factor in the dynamic equation, is
large. One possible reason is that a two-stage furnace unit was
used in this house to heat and one constant thermal dynamic
equation can not model it when the second coil was turned
on to heat up the room rapidly. By looking at the residuals of
one day fitting one day prediction shown in Fig. 5, we observe
a daily pattern. The peaks around7AM reflect the impact of
human activities.

TABLE III: Results of Oregon house
εp ᾱ ± σα ḡ ± σg c̄ ± σc

One day fitting 0.6471 0.0933 ± 0.0597 0.1407 ± 0.0238 1.6986 ± 1.5965

Interval fitting 0.3625 0.0259 ± 0.0274 0.1267 ± 0.1116 0.3684 ± 0.5967

A more adaptive methodology is used for model identifi-
cation. Specifically, measurements are divided into weekdays
and weekends and each day is divided into12 equal intervals.
Measurements from the same intervals of previous5 to 10
weekdays (weekends) are used for data training and estimating
the thermal parameters. Thus total12 models for different time
periods are identified within a single day. The temperatures
within the interval of the target day is predicted using the
corresponding extracted parameters. For example, if the target
period is7AM to 9AM on Monday, measurements from7AM
to 9AM on last Monday to last Friday are used to extract one
set of (αf , gf , cf ). We believe that this model captured the
seasonal change as well as the human activities.

Temperature prediction and parameters realization of Ore-
gon data are shown in Fig. 6. The prediction follows the actual
temperature closely and there is a clear daily cycle in the
thermal coefficients. Q-Q plots suggests non-Gaussianity as
well. Details can be found in [19]
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Fig. 5: Oregon data: modeling and prediction errors of one
day fitting one day prediction method
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III. A HEM O PTIMIZATION FRAMEWORK

We describe in this section the proposed HEM architecture
and related optimization with constraints. The specific tech-
niques used in the optimization are described in Section IV.

A. Architecture of HEM

The HEM architecture considered in this paper is generic, il-
lustrated in Fig 7. As a control center, the HEM device receives
pricing information from the local utility or energy aggregator.
In addition, the HEM device may also receive interruption or

other control signals from the utility. In particular, we assume
that the utility may limit the maximum power consumption
during certain days or certain hours. Other information may
also include local weather forecast.

The HEM device also interfaces with the consumer directly.
It is assumed that the consumer input desired temperature
profile that form the basis of measuring consumer satisfaction
or quality of service. For certain appliances, the consumer
specifies operation constraints. This may include, for example,
the start time and deadline of plug-in hybrid electric vehicle
(PHEV) charging or other deferrable load.

We focus here the interaction between the HEM device and
the controllable appliances. This interaction is bi-directional;
the HEM device takes sensor measurements and sends control
signals to individual appliances.

HEMs

Control
Algorithm

Measurements
 and

Modeling

controller

HVAC

PHEV

Def

User 
Interface

User

Info.
Interface

Numerical
Weather
Report

Aggregator

Fig. 7: Architecture of HEM

B. Load classes and assumptions

We consider three types of controllable demands: control-
lable dynamic load (HVAC), deferrable and interruptible load
(PHEV charging), and deferrable and non-interruptible load
(such as washer and dryer). We also consider the possibility
of integrating local renewable resource (solar panel)

The model of dynamic load (HVAC) has been discussed
earlier in Section II. Implicitly assumed here is that the model
used in the optimization is tracked or updated periodically. We
assume that the HVAC is subjected to on-off control only.

We consider PHEV charging as a deferrable and interrupt-
ible load. In particular, charging can be temporarily suspended
and resumed at a different time. The charging time and amount
within each period are part of the optimization. The arrivaland
departure time of PHEV are assumed specified and a desired
amount of charging should be delivered by the deadline.
Specifically, the charging deadline is a hard constraint with
a higher priority than temperature comfort. Similar approach
can be found in [9]. The work presented in [20] discussed a
strategy that took into account battery degradation, whichwe
ignore here.
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The deferrable and non-interruptible loads have the flexibil-
ity of optimizing starting time. Once a task starts, it has tobe
completed. We assume that we are given the hard constraints
on the earliest and latest starting time. We assume in the
simulation that the deferrable and non-interruptible loaddraws
constant rated powerP Def

rate.
Distributed renewable energy is considered as an additional

power resource of the house. The solar panel is considered
as an example in this paper. During the day time, solar panel
could provide power to the house which helps to alleviate the
energy and budget shortage. The output of the solar panel is
assumed not controllable but predictable with noises and not
enough to cover all the power usage in this paper.

C. Control policy, performance measure, and constraints

Optimization is used to derive acontrol/scheduling policyπ
that maps the informationY[0:t) collected via interface and the
measurements up to timet to the power allocation to the loads
(pπHVAC [t], p

π
PHEV[t], p

π
Def[t]) at the fast time scale (at intervals of

one or several minutes).
The performance of the control policyπ is measured

by consumer satisfaction. In this paper, since we impose a
budget constraints on energy expenditure and require that all
deferrable loads are served before deadlines, the consumer
satisfaction is measured only by the temperature deviation
from the desired set points,i.e.,

D(π)
∆
=Eπ(

∑

t

‖xin[t]− d[t]‖2). (8)

We assume that the consumer is a price taker. Given the
price of electricityz[t], the cost of control policyπ is given
by

C(π)
∆
=
∑

t

z[t]× pπ[t], (9)

where pπ[t] = pπHVAC[t] + pπPHEV[t] + pπDef[t] is the total power
consumption within time intervalt.

In addition to the thermal dynamic constraint, we impose
the following types of constraints:

1) Budget (cost) constraint:We assume that the consumer
specifies a long term budget constraintB in the form
of weekly or monthly dollar amount. In our approach,
B is broken into daily budgetBd which is adaptively
adjusted from one day to the other. See Section IV-C for
a budget allocation scheme.

2) Maximum power constraint:We assume that there is a
maximum power consumption limit imposed either by
the utility or an energy aggregator. Such a constraint
may be mandated as part of certain demand response
program for which the consumer may receive lowered
rate for accepting such limits.

3) Scheduling constraints:We assume that deferrable loads
are specified by their deadlines. Assuming feasibility,
such scheduling constraints are always met.

We now have the detailed constrained optimization as
follows

minimize
∑Ts×Tf

t=1 Eπ‖x
in[t]− d[t]‖2

subject to 1. (x[t], y[t]) ∼ Φ(Af , Gf , Cf )
2. pHVAC [t] ∈ {P HVAC

max , 0}

3. TE ≤ s ≤ TL

4. pDef[t] = {
P Def

rate if s ≤ t < s+ d
0 o.w.

5. 0 ≤ pPHEV[t] ≤ P PHEV
max

6.
∑Ts×Tf

t=1 pPHEV[t] = Q
7. pPHEV[t] = 0 if t < TA or t > TD

8.

∑Tf×i

t=Tf×(i−1)+1(p
HVAC [t] + pPHEV[t]

+pDef[t]− pRenew[t]) ≤ Pi i = 1, . . . , Ts

9.
∑Ts×Tf

t=1 z[t](pHVAC [t] + pPHEV[t] + pDef[t]− pRenew[t]) ≤ Bd

(10)
where the indoor temperature vectorxin[t] is part of the
state evolution(x[t], y[t]) ∼ Φ(Af , Gf , Cf ) specified by the
stochastic thermal dynamic equation (3). The control variables
(pHVAC[t], pPHEV[t], s) in this optimization are fast time-scale
power allocation for HVAC, PHEV and the starting time of
deferrable and non-interruptible load. Note that onces is
determined, the power consumptionpDef[t] is fixed.

The global objective is to minimize the expected temper-
ature deviation over a whole day, where the state follows
the thermal dynamic model in constraint (1) and the control
of HVAC is an On-off control as stated in constraint (2).
Constraints (3-4) describe the deferrable and non-interruptible
load, which has to start betweenTE and TL, and work
consistently for timed. Constraints of PHEV are stated as (5-
7). pPHEV[t] is assumed to be continuous and a desired amount
of charging,Q, is required to be delivered betweenTA and
TD. The total power consumption withinith hour should not
exceed the power limitPi and the total cost is bounded by
daily budgetBd

The above optimization is a mixed integer program with a
high dimensional state space. The main challenge of this opti-
mization comes from the power limit and budget constraints in
(8-9) which bundle all control variables. In the next section,
we present a multi-scale model predictive control approach
that unbundles these variables.

IV. M ULTI -SCALE MODEL PREDICTIVE CONTROL

In this section, we present the multi-scale control architec-
ture of HEM system shown in Fig. 8 based on the princi-
ple of model predictive control. The proposed optimization
problem (10) is decomposed into two time-scales. The HEM
system distributes the hourly power expenditure to different
devices at the slow time scale. In the fast time scale, HEM
system measures the temperatures, extracts thermal parameters
and predicts the thermal dynamic statex̂[t+k|t] into the future
using Kalman filter. Since loads are decoupled in the slow time
scale, HEM system can optimize the detailed power allocation
of loads individually at the fast time scale. In both time scales,
only first step is implemented and HEM system resolves the
problem again with latest observations.
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Fig. 8: Multi-scale HEM architecture

The MPC based suboptimal approach to the HEM stochastic
problem is detailed described in Table IV. The slow and fast
scale problems are discussed individually in this section.

A. Slow time scale stochastic optimization

We decompose the overall optimization (10) into two time-
scales. In the slow time scale, HEM system distributes power
expenditure to different loads and decouple them from the
power limits and the budget constraints. The slow time scale
problem is formulated as follows:

minimize
∑Ts

i=1 E‖x
in
i − di‖

2

subject to (xi, yi) ∼ Φ(Â, Ĝ, Ĉ)
0 ≤ pHVAC

i ≤ P HVAC
max

TE ≤ s ≤ TL

pDef
t = {

P Def
rate if s ≤ t < s+ d

0 o.w.

0 ≤ pPHEV
i ≤ P PHEV

max∑Ts

i=1 p
PHEV
i = Q

pPHEV
i = 0 if i < TA or i > TD

0 ≤ pHVAC
i + pPHEV

i + pDef
i ≤ Pi + pRenew

i , i = 1, · · · , Ts∑Ts

i=1 zi(p
HVAC
i + pPHEV

i + pDef
i − pRenew

i ) ≤ Bd

(11)
Different from the formulation of the overall problem (10),

HEM system only optimizes power expenditure at slow time
scale andpHVAC

i is a continuous variable.
To deal with home appliances which are starting in the

middle of a slow time scale interval, HEM system needs to
scale the maximum power constraints of these loads propor-
tional to the fraction of available working time within that
interval. For example, the PHEV arrives home at 7:40 and the
maximum charging rate within that hour will be set as1

3P
PHEV

max .
For simplicity, we assume all the loads start in the beginning
of the intervals in this paper.

B. Fast time scale stochastic optimization

Receiving the slow time scale power expenditure as con-
straints, HEM system schedules loads in the fast time scale to
meet the requirements and minimize the temperature deviation.
In the fast time scale problem, the MPC principle applies as
well, except that for HVAC and some loads we are dealing
with integer control variables.

The control problems of various devices are decomposed in
the slow time scale problem so we can consider them indi-
vidually. The starting time of deferrable and non-interruptible
determines the power allocation trivially. If we can assume

the charging rate of PHEV is continuous, the fast time scale
charging problem is just a linear programming. In this paper,
the electricity price is assumed constant over one hour, so we
omit the fast time scale problem for dryer and PHEV.

When focussing on the control problem of HVAC, we
are dealing with a integer programming. The fast time scale
problem of HVAC is formulated as follows:

minu[i]

∑Tf

i=1 E‖x
in[i]− d[i]‖2

subject to (x[i], y[i]) ∼ Φ(Âf , Ĝf , Ĉf )
pHVAC [i] = u[i]P HVAC

rate

u[i] ∈ {0, 1}
∑Tf

i=1 u[i] ≤
pHVAC
k

PHVAC
rate

wherepHVAC
k is the power budget assigned by the HEM device

at the slow time scale.
The most widely used HVAC control strategy is the rule

based control (RBC) or bang bang control. It is a control
restricted between a lower and an upper bound around the
set points [21]. In practice, the length of the interval between
HVAC on-off states switching may be an additional constraint
as it influences the longevity. A benchmark solution of the fast
time scale problem is to relax the0−1 constraintu[i] ∈ {0, 1}
by a continuous oneu[i] ∈ [0, 1]. The relaxed problem gives us
an lower bound of the performance. Similar relaxation problem
is discussed in [22].

Within the class of integer optimization, we formulate the
problem as that given the slow time scale power expenditure,
we choose the working periods of HVAC to minimize the
deviation of indoor temperature from the set points. Once the
switching time is determined, the HEM can implement the
control of HVAC by artificially changing the set point without
actually installing an extra device.

Given the hourly power expenditurepHVAC
k , we calculate the

number of working periods (minutes) of HVAC byNk =
⌈pHVAC

k /P HVAC
rate ⌉. The allocation of the working periods is for-

mulated as a stochastic programming with a binary action
space, which is still computationally intractable. But we can
approximate this as an shortest path problem by assuming the
changes of indoor and outdoor temperature are small within
one hour. At timet, we approximate the future outdoor indoor
temperature gap,(xout[t + i] − xin[t + i]), as the initial one,
(xout[t]− xin[t]).

At the tth minute, denote the initial temperature difference
as R , αf (x

out[t] − xin[t]) and the HVAC power effect as
U , gfP

HVAC
rate . The future temperature at(t+ i + 1)th minute

is approximated as:

xout[t+ i + 1] ≈ xout[t]
xin[t+ i+ 1] = xin[t+ i] + αf (x

out[t+ i]− xin[t+ i])
+gfP

HVAC
rate u[t+ i]

≈ xin[t+ i] + αf (x
out[t]− xin[t])

+gfP
HVAC

rate u[t+ i]
≈ xin[t] + (i + 1)×R

+U
∑i

k=0 u[t+ k]
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Fig. 9: Shortest path formulation

The approximation problem can be formulated as follows:
at minutet, solve the dynamic programming problem:

minû[i]

∑Tf

i=t+1 ‖x
in[i]− d[i]‖2

subject to xin[t+ i] = xin[t] + i ×R+ U
∑i−1

k=0 û[t+ k]
∑Tf

i=t û[i] = Nk −
∑t−1

j=1 u[j]

û[i] ∈ {0, 1}

Consider a grid as shown in Fig. 9. At timet, the vertices
are defined as the future indoor temperatures at timet, t +
1, . . . , Tf under different strategy scenarios and the distance
between adjacent vertices is defined as the temperature devia-
tion of the(t+i+1)th minute,(‖xin[t+i+1]−d[t+i+1]‖2).
Going upward means the HVAC will be working for the next
minute (u[t+i]=1) while going right means not (u[t+i]=0).
So we have a single-source (left bottom of the grid) single-
destination (right top of the grid) shortest path problem with a
grid size of(Nk −

∑t−1
j=1 u[j])× [Tf − t− (Nk−

∑t−1
j=1 u[j])].

This problem can be well solved by Dijkstra’s algorithm.
Considering the approximation may not be accurate, we apply
the MPC principle here. At the beginning of every minute we
solve the shortest path problem and apply the firstu[i] and at
the beginning of the next minute we solve the updated problem
again.

It is true that the power consumed in the fast time scale
stage may be less than the power expenditure allocated in the
slow time scale stage,i.e.,pHVAC

rate

∑Tf

i=1 u[i] ≤ pHVAC
k . We just put

the residual back to the budget pool and reuse it in the future.

C. Budget Allocation

At the beginning of a week or a month, HEM device
receives the total budget setting from the users and distributes
the money into everyday according to the weather information
from numerical weather report and the activity information

TABLE IV: Model Predictive Control in Slow and
Fast Time Scales

Model Predictive Control in Slow Time Scale
1 At hour t, compute Kalman state predictionŝxt+k|t usingyt.
2 Obtain the optimal starting times∗ by minimizing the cost of deferrable load.
3 Solve for(p̂HVAC

i , p̂PHEV
i )Ts

i=t by the quadratic optimization:

minimize
∑Ts

i=t+1

(

‖xin
i|t − di‖

2
)

subject to (xi, yi) ∼ Φ(Â, Ĝ, Ĉ)

0 ≤ p̂HVAC
i ≤ PHVAC

max
0 ≤ p̂PHEV

i ≤ P PHEV
max

∑Ts
i=t p̂

PHEV
i = (Q −

∑t−1
k=1 TpPHEV

k )+

p̂PHEV
i = 0 if i < TA or i > TD

0 ≤ p̂HVAC
i + p̂PHEV

i + p̂Def
i ≤ Pi + p̂Renew

i , i = t, · · · , Ts
∑Ts

i=t zi(p̂
HVAC
i + p̂PHEV

i + p̂Def
i − p̂Renew

i )

≤
(

Bd −
∑t−1

k=1 zk(p
HVAC
k + pPHEV

k + pDef
k − pRenew

k )
)+

4 SetpHVAC
t = p̂HVAC

t andpPHEV
t = p̂PHEV

t .
5 t → t + 1, go to line 1 untilt = Ts

Model Predictive Control in Fast Time Scale
1 At minute t, compute Kalman state predictionŝxin[t + k|t] usingyt.
2 Solve forû[i] by the quadratic optimization:

minimize{û[i]}

∑Tf
i=t+1 ‖xin[i|t] − d[i]‖2

subject to (x[i], y[i]) ∼ Φ(Âf , Ĝf , Ĉf )

pHVAC [i] = û[i]PHVAC
rate , û[i] ∈ {0, 1}

∑Tf
i=t û[i] = Nk −

∑t−1
j=1 u[j].

3 Setu[t] = û[t].
4 t → t + 1, go to 1 untilt = Tf

from calendar. Assuming HEM device is cooling the house,
one direct way is to distribute the budget in proportion to the
forecasted daily average outdoor temperature. Another oneis
known as water filling in communication. Similarly, the money
is distributed to every particular day according to the predicted
outdoor temperature by solving the following optimization
problem:

maximize
∑Tw

d=t log(1 + Bd

Td
)

subject to
∑Tw

d=t Bd = B
(12)

whereB is the total budget,Bd is the daily budget andTd is
the predicted daily average outdoor temperature. The optimal
solution can be viewed as filling the daily temperature curve
by the budget as shown in Fig. 10

1
Td

1
Td

Day

Bd

Fig. 10: Water filling budget allocation

Considering that the long term weather report is not reliable,
we employ the rolling scheme here. At the end of every hour,
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if the budget is not used up, HEM device will put it back
to the rest of total budget pool and allocate the daily budget
again with updated information.

V. SIMULATION AND PERFORMANCE RESULTS

In this section, an scheduling example is shown at the
beginning, followed by the comparison between proposed
MPC algorithm with the RBC and other benchmarks based on
real measurements. In the end, the shortest path performance
is discussed.

First of all, scheduling of three different kinds of loads
without renewable energy is considered in the simulation. A
PHEV is assumed available from 8PM to 8AM. The charging
rate is nonnegative which implies it can not supply energy back
to the grid. The washer/dryer, as an example of deferrable and
non-interruptible load, is assumed to work for 2 hours, starting
no earlier than 4PM and no later than 8PM. The power rate is
assumed constant. The power limits profile, simply assumed
to be a sinusoid curve, and the daily budget are constraints
given to HEM.
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Fig. 11: Power policy example: price, dryer and PHEV
charing, total power and peak power constraints,
indoor temp, HVAC

The power policy example is illustrated in Fig. 11. Recall
that the global objective is to minimize the temperature de-
viation. The scheduling of PHEV and washer/dryer affects
the temperature deviation indirectly through the peak limit
constraints and economic budget constraints. In Fig. 11, to
yield budget to HVAC, the charging of PHEV is shifted to
the price valley. The washer/dryer takes a relatively lower
price period because of the tighter deadline. Note that the peak
power constraint is bounded in some periods and the power
allocated to HVAC, with a lower priority, is limited. So the
indoor temperature deviates from the set points.

To show the performance of proposed MPC approach, it
is compared with some benchmark solution using extracted
thermal parameters and weather information. Note that the
deferrable loads do not appear in the objective function and
affect the discomfort level only via peak power constraintsand
total economic budget. The control of HVAC is simulated and
other loads are removed from these two constraints.

In the simulation, the benchmarks include rule based control
(RBC), performance bound (PB) and an algorithm combining
the MPC and the LQG (thus referred to as MPC-LQG)
originally proposed in [11]. When the constraints are loose,
MPC-LQG performs closely to LQG, which is the optimal
solution to the unconstrained stochastic programming problem.
When the constraints are tight, the performance of MPC-
LQG is close to open loop control. The performance bound is
obtained by assuming the system noise and weather condition
in the future are perfectly known.
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Fig. 12: 1 day performance comparison between multi-scale
algorithm (MPC), MPC-LQG, PB and RBC

Assuming the outdoor temperature follows an auto-
regression model, the performances of algorithms are shown
in Fig. 12. The discomfort level, which is measured based on
Predicted Mean Vote (PMV) [23], against total energy cost
is plotted. In this paper, the tolerance region is set zero and
the absolute value of temperature deviation from set points
are used as PMV. In Fig. 12, at the same discomfort level,
the proposed approach saves around20% comparing to MPC-
LQG and spends about8% more than the performance bound.
Comparing to RBC, the multi-scale approach maintains the
same comfort level with30% less cost. The performance of
different algorithm appears the same when there is a tight
budget constraint, which is because all strategies have limited
power to allocate.

To show the impact of model accuracy on performance of
MPC, the comparison between different outdoor temperature
prediction noise is drawn in Fig. 13. With the same power
and budget constraints, the discomfort level of MPC reduces
fast with the decreasing of the noise. The performance of RBC
does not change because RBC does not rely on the forecasting.
When the prediction is accuracy, the gap between MPC and
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Fig. 13: Performance comparison between RBC, PB and
multi-scale algorithm (MPC) with various outdoor
temperature noises

performance bound is negligible.
We compare the performance of the multi scale algorithm

with the real RBC control of HVAC based on the real measure-
ment data from Arizona, in Fig. 14. The discomfort level of
RBC is calculated from the indoor temperature measurements
and the power consumption is from the power meter. In
the simulation, MPC uses data from pervious day to build
the thermal model and uses the parameters to predict and
allocate power to HVAC for the next day. While the indoor
temperature changes following the dynamic equation with
the real thermal parameters of the target day. To show the
impact of the accuracy of the thermal model, the same MPC
algorithm assuming knowing real parameters is plotted as a
comparison. At the same discomfort level of RBC, the multi-
scale algorithm saves about 12% and the gap between MPC
and PB is less than 2%.

600 700 800 900 1000 1100 1200
0

5

10

15

20

25

30

35

Cost (cents)

P
M

V

 

 

MPC with estimated Para
RBC
MPC with real Para
Performance Bound

Fig. 14: Arizona data: 10 days performance comparison
between RBC, PB and multi-scale algorithm
(MPC)

A similar simulation, which heating the house instead of
cooling, is carried out based on the measurements from Oregon
shown in Fig. 15. The performance of RBC is also simulated.

By relaxing the lower bound, we plot the performance curve
of RBC as well as the actual performance calculated from
measurements. The simulated RBC differs from the measure-
ments because of the modeling errors. At the same comfort
level, multi-stage algorithm saves more than30% comparing to
the performance of RBC calculated using real measurements.
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Fig. 15: Oregon data: 5 days performance comparison
between RBC , PB and multi-scale algorithm
(MPC)

To see the impact of renewable energy, we include the solar
panel in the optimization as an alternative power resource.In
Fig. 16, the output of the solar panel is assumed predictable
with noise. Since the solar power not only alleviates the peak
power limits but also the budget, the discomfort level is lower
with cheaper energy cost. At the same discomfort level, MPC
algorithm saves more than50% comparing to RBC from
measurements. While without solar power, the saving is around
22%.
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Fig. 16: Oregon data: 1 days performance comparison
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(MPC) associated with solar power

To show the efficiency of shortest path algorithm in fast
time scale optimization we compare the shortest path approach
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with the optimal solution to the relaxed continuous problem.
In Fig. 17, simulation is carried out based on the extracted
thermal parameters. At the same comfort level, the gap is less
than5%, which implies the performance of the shortest path
is a reasonable approach to approximate the original problem.
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Fig. 17: Shortest path approach vs relaxed solution

VI. CONCLUSION

A Home energy management (HEM) system, as a key
component of demand response in smart grid, should be able to
control various residential loads based on the user requirement
and other information. We formulate the control problem of
HEM in this paper as a multi-stage stochastic programming
problem. The HEM system acts as an interface between
users and aggregators to exchange the real-time pricing signal
and power consumption limits. Using the measurements and
numerical weather report, the HEM system optimizes the
power allocation to minimize the user discomfort level. A
multi-scale computationally tractable suboptimal approach is
proposed to solve the stochastic programming problem. First
order thermal dynamic model is validated and online thermal
parameter estimation algorithms are tested. Based on the real
measurements, the performance is evaluated and compared
with benchmark algorithms.

Human activities impact can be observed from the thermal
model and the behavior pattern is an interesting problem
remaining to consider. A more careful analysis of budget
allocation is needed. The impact brought by HEM on the elec-
tricity price and real-time market warrants further studyis still
an open problem. A number of simplifying assumptions made
in this paper need to be justified for practical implementations.
Nonetheless, many of the modifications required to circumvent
the above simplification assumptions can be incorporated into
the proposed optimization framework.
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