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Abstract—The problem of modeling and stochastic optimiza- A. Summary of results and contribution
tion for home energy management is considered. Several dif-
ferent types of load classes are discussed, including headj The main contributions of this paper are in the modeling and

ventilation, and air conditioning unit, plug-in hybrid electric optimization in HEM. On modeling, we present an empirical
vehicle, and deferrable loads such as washer and dryer. A study aimed at extracting and validating a simple linear

first-order thermal dynamic model is extracted and validated del b d the first | fth | d . iqinall
using real measurements collected over an eight months time MOC€! based on he Tirst law o thermal dynamics originaily

span. A mixed integer multi-time scale stochastic optimizon is ~ considered by Bargiotas and Birdwell [1]. In particular, we
formulated for the scheduling of loads of different characeristics.  obtain model parameters using data collected over a pefiod o
A model predictive control based heuristic is proposed. Nurerical  eight months in Arizona and Oregon, two states with différen
simulations coupled with real data measurements are used fo \yeather conditions. The residential houses from which data
performance evaluation and comparison studies. are collected also have different heating and air conditgn
Index Terms—Home energy management, model predictive . . . . _g 4
control, demand response, temperature control, stochagtiop- €duipments. While there is extensive literature on thentiaer
timization. dynamic models of large facilities, there is limited resnlthe
open literature on models for suburban residential homieg us
data of relatively large size. Our study shows that the linea

time invariant state-space model holds well in one locaiton

HE idea of automated temperature control goes badk24 hours horizon whereas, in another location, the model
over a hundred years when Warren Johnson inventedi@lds well only in a two hours horizon. This suggests that, in
complete multi-zone temperature control system. The bagigneral, a model used by a HEM system needs to be adaptive
principle of temperature control has stood the test of timeé aand model parameters need to be tracked, albeit at a réjative
can be applied to the general problem of home energy m&hower rate than the typical minute level sensing rate.
agement (HEM) where energy is delivered to different types On optimization in HEM, we propose a stochastic and
of load. The objective of HEM is to use energy efficiently fordynamic optimization framework with several features that
a comfortable and enjoyable living and working environmento our best knowledge, are new or have not been emphasized
Underlying this objective is the fundamental tradeoff betww in existing approaches in the literature.
costs and quality of services. First, we formulate a constrained optimization where the
The advent of “smart grid” will likely advance the stateconsumer dissatisfaction measured by temperature daviati
of the art of HEM in multiple dimensions. Some of thds minimized. The optimization is subject to maximum power,
most important characteristics of HEM in a smart grid eranergy expenditure (monetary cost), and thermal dynamic
include the extensive use of sensing devices, the optintainstraints. The maximum power constraints are usually not
and automated management of different types of load, tbensidered in existing formulations. Making this consttai
integration of renewable energy and storage, and the yabiléxplicit allows the HEM device to respond not only to pricing
to respond to dynamic prices. signals but also to retailer imposed interruptions or load
In this paper, we consider scenarios in which a HEM devicghedding requests. It can also be part of a hierarchical déma
serving as a control center, interfaces with the consumér amsponse system where an individual home receives power
an electricity retail provider. Through the HEM device, thallocation as part of a community based demand response
consumer participates in an economic demand responsedpjimization [2]. The consumer expenditure constraintls® a
managing energy consumption in response to dynamic pricim@t part of most existing approaches. In our formulation,
The HEM device can also be used in an emergency demdhd HEM device optimizes consumer satisfaction given, for
response program where the retailer sets limits on powegreus&xample, a monthly budget for energy consumption. This is
at times when the consumption needs to be curtailed. a key to emancipating the consumer from real-time decisions
on energy usage while removing the potential cost overrun at
'z, yu, L. Jia, and L. Tong are with the School of Electrical Aandthe end of a typical budget cycle.
e e e k. oy oy and e wn_ Second, the proposed optimization framework operates in
the Intel Corp., USA. multiple time scales: sensing, control, and parametemesti
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December 2011 and the IEEE PES General Meeting in July 2012. ture to individual loads at a slow time scale (30 minutes to
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an hour), satisfying cost constraints in even slower tinsesc search optimization. It was a single stage optimizationcihi
(weeks or months). The partition of the energy management get the thermostat set points, whereas this work includestdi
to slow and fast time scales significantly reduces comprtaticontrol of the HVAC system. In [10], thermal dynamic was
complexity. To this end, we use the slow-time scale optimizancluded and a similar concept of multi-scale feedback mdnt
tion to allocate energy expenditure to individual appliesic was proposed to manage the temperature and utilization of
At the fast time scale, we perform separate optimization f@PU. Utilization budget was calculated in slow time scale
each load class. to maintain the temperature and in fast time scale CPU was
Third, because most existing heating, ventilation, and alistributed to tasks to meet the utilization set point.
conditioning (HVAC) units implement on-off controls, the The MPC strategy adopted in this paper goes back to [11],
underlying optimization involves integer decision vatesh [12], and [13]. In [11], an algorithm referred to as LQG-MPC
Finding the optimal on-off control sequence at the fast tim@as proposed to deal with the state and control linear inequa
scale does not have a computationally tractable solutiom. \ty constraints. In [12], and [13], the Quadratic Dynamic hifat
show that, if the indoor-outdoor temperature differencesdoControl was used to solve nonlinear process optimization
not vary significantly at the fast time scale, the problem afith state estimation. In [14], the flexible constraint hémgl
optimal on-off control can be approximated by the shortesapabilities of MPC were shown and the robust adjustments
path problem, which can be easily implemented by standasgre surveyed in [15].
techniques. The current paper presents a hierarchical multi-timescale
multi-stage approach to HEM. The two conference publica-
B. Related work tions [16] and [17] that proceed the current paper include
The literature on home energy management is extensidgbreviated description of the proposed approach and simu-
and expanding. We focus here related work on the modelitggions. Additional new material that incorporates rene\wa
and control aspects of HEM. Studies on thermal dynamémergy source is also included in this journal version.
models for residential and commercial buildings date from o )
1978. The work reported in [3] used a convenient set & Organization and notations
equivalent thermal parameters for residential townhoGge-. This paper is organized as follows. Section Il discusses the
approach is based on the work of Bargiotas and Birdwell [identification and validation of the thermal dynamic model
who developed a simple linear dynamic model that involvémsed on real measurements collected in the states of A&rizon
a residential air conditioner. The power consumed by the @nd Oregon. Section lll presents different charactesstit
conditioner is the control input and outdoor temperatuee tkelectricity loads and distributed renewable source in -typi
exogenous random input. Our work in this paper focuses on tt& residential house and formulates the overall optironat
estimation and validation of this model for a modern HVA@roblem as a quadratic stochastic programming. In section
system in a residential home. IV, we decompose the control problem into two time scales
There is a substantial literature on HEM control. In [4]and propose a MPC based multi-stage multi-scale approach.
the authors proposed the architecture of HEM system in theimerical results and comparison are presented in Section V
framework of spot price and formulated the control problem Notions in this paper are standard. Because multiple
without maximum power constraints. Authors of [5] proposetimescales are involved, we usg for signal z in the slow
a three-layer control mechanism and used Tabu search to fiimdescale andz[t] for the fast timescale counterpart. For
a feasible solution. In [6], particle swarm optimization svaconvenience, variables are cataloged below.
used to find the optimal solution for coordinately schedylin
multiple energy resources. These approaches requiredsaecu
prediction of future energy usage. In [7], model and enviy, §r, ¢y Estimated fast time scale thermal parameters
ronmental uncertainties were incorporated into the pregosay, g, c; Real fast time scale thermal parameters
optimization framework. The developed control, howeversw A¢, G¢, C; Real fast time scale thermal parameter matrix
an open loop strategy without using real-time measurements ¢, C' Estimated slow time scale thermal parameter matrix
The authors of [8] considered a similar scheduling problevﬁlf, Gf, C'f Estimated fast time scale thermal parameter ma-
as one treated in this paper. The emphasis in [8] was on the trix
tradeoff between cost and waiting time in a multi-home sgtti [t + k|t] State prediction given observation by time
The work presented here focuses on energy managemgtt] Predicted indoor temperature
within a single home with a design tradeoff between cost adg(x)  Thermal dynamic equations

NOMENCLATURE

comfort level subject to budget and power constraints. It is Scheduling policy

also significant that the scheduling problem consideretiig t o Intensity of modeling noise
paper involves thermal dynamics that dictates the forrmanat ¢,, Mean squared modeling error
of multi-stage stochastic dynamic optimization. The tharme, Mean squared prediction error
dynamic was not modeled in [8] and the optimization involve®,.;, Information collected up to time
was considerably simpler. The thermal dynamics were inrclué Weekly or monthly budget

ed in the HEM proposed for a single home in [9], using a dired} Slow time scale desired temperature
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Ny, Number of working minutes of HVAC planned at timethermal dynamic based upon the energy balance analysis
t presented in [1] is used in this paper. The first-order ststtia
p™[t] Total power consumption of policyr within time differential equation of the continuous temperature sfates
interval ¢. stated as follows:
Dhnclt]s PEellt], pE[t] Power consumption in interval under
policy 7 dI} = (TP — T}")dt + RP™ dt + odv, 1)
Def
;D,R‘:C ] Egget: n:?atz : ;Igjgxgrlsllg)cﬁi on of HVAC whereq is the thermal resistan_ce relatedwfg the heat exchange
PP Continuous time power consumption of HVAC between the outdoor and the md_o_or an° the power rate.
Pve Maximum power limit of HVAC of_the HVAC, _andR the power ef_f|C|¢ncy. '_I'he tempergture is
PT:?TEV Maximum power limit of PHEV driven by a Wiener processiv, Wlth |nten5|_tyo—. The Wiener
R . rocess accounts for other heating/cooling sources such as
f Slow time scale power output of renewable resourcE S .
P, Total power limits within hourt uman a.ct|V|t|es,. refngerz_:ttors and drygrs, etc. _
jod Slow time scale power expenditure of deferrable Ioathh.e d|screte-_t|mg equivalent equation for the continuous
pi™¢  Slow time scale power expenditure of HVAC physical model is given by
pi*®  Slow time scale power expenditure of PHEV [t + 1] = 2"[t] + ap(x™[t] — 2"[t])
Q Desired charging amount of PHEV HVAC in
s Starting timegof?jeferrable load TP+ ep 7Y @
Tr Continuous time indoor temperature where oy, g¢,cy are the essential thermal parameters to be
o Continuous time outdoor temperature estimated and"[¢] the system noise, assumed Gaussian and
T4, Tp Arrival and departure time of PHEV Zero mean.
T, Predicted daily average outdoor temperature In a state space form with the possibility of including
Ty, Ty, Earliest and latest starting time of deferrable load multiple HVAC units and multiple sensors, the matrix form
Ty Number of stages in fast time scale optimizatiery(, Of equation (2) is stated as:
60 minutes per hour_) _ o o[t + 1] = Apzft] + Gpp™e[t]
T, Number of stages in slow time scale optimization D(As, Gy, Cp) - +Cy + o[t 3)
(e.g.,24 hour per day) ' y[t] = 2[t] + w[t].
Ty Number of stages in budget allocatioe.d., 7 days
per week) wherez|t] is the state vector, consisting of indoor temperatures
u[t] € {0,1} On-off status of HVAC in different rooms and the outdoor temperatusg. reflects
v[t]  Modeling noises vector the heat exchange between rooms as well as the outdoor and
v"[t]  Fast time scale indoor temperature modeling noise the indoor air.GG stands for the power efficiency of multiple
v Slow time scale modeling noise HVAC units. y[t] is the measurements of state$], w[t] are
w[t]  Measurement noises vector the modeling and measurement noise.
a[t]  Fast time scale state . . B. Data collection and measurements
2f, 3" Slow time scale state variables, indoor and outdoor . .
temperature Mgasurements were tgken from one hous_e in Arizona and
ylf Fast time scale measurements one in Oregon. In the Arlzo_na caseHVAC units were used
7 42 Slow time scale measurements _to cool_? rooms. The data mcluded_outdoor temperature and
zt[t’] ! Fast time scale electricity price m_solatlon, HVAC power consumption and temper_atures of
- Slow time scale electricity price dlff(_arent rooms. The data were pollec_ted evafy minutes
C(x) Economic cost under policy during August to Novgmbe@Oll in Arizona. The O_regon
D(r) Temperature deviation under policy data were collected similarly from Je_muary to Ap2ih12.
R R A ay (@t] — 2"[t]) In this case, a two-stage furnace (high heat and low hgat
u UL gpPve mode) was used to heat the room. The power consumption
Jre was computed from the cycle time of the furnace. As an
I[I. M ODEL IDENTIFICATION AND VALIDATION example of typical measurement, Fig. 1 shows the indoor

In this section, we present a first-order difference eql]ati("i1
of the thermal dynamic model based on the work of Bargiot

nd outdoor temperatures, the power consumption, and the
ggrticular temperature set-point profile.

and Birdwell [1]. Two data sets from Arizona and Orego. Model identification and validation
are described and different methodologies of model fittirey @ The parameters in model equation (2) can be obtained using

presented. The techniques used here are standard. the method of least squares:
A. Thermal dynamic model A il in in
ynar (G5,9r,27) = argmin(} [|(2"t + 1] — 2"[t])
Thermal dynamic parameters vary from house to house, as ap9fer y=1

well as

human activity patterns. An electric heating-cogli —(cf + ap(@™t] — 2" [t]) + grp™[t])]|* X4)
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assumption seemed to hold for a relatively shorter timeopleri
and more adaptive modeling strategy seemed to be necessary.
We note that observations presented here are specific to the
set of data used in this work.
1) The Arizona caseFor the Arizona data collected during
/ the month between August and November, we observe that
a stationary within a one-day time horizon appeared to be
adequate. Specificallg measurement points (one point every
15 minutes) from previous day are used to extract one set of
thermal parameters. Using this set(of;, g¢, ¢¢), the outdoor
temperature measurement and the HVAC power, the indoor
temperature of next day is forecasted.

A summary of Arizona data is shown in Table I. Itis evident
ot I e e [ W that, for most rooms, the modeling and prediction errors are
| O O P quite small. One particular anomaly is the model fitting for
7 8 9 10 11 12 13 . . .

Day the extra room which had a large prediction errors as well as
a much greater standard deviation of indoor temperature. On
explanation would be that there was another thermal source
in this room which was not considered in the model. More
extensive results can be found in [18].

Indoor Temp
Outdoor Temp R
Set Point J‘\ﬁ/”;

Power

Mo af
f » v
/\ Ay AM’J \/\ Uf

I N N N N

e l [

Fig. 1. Oregon data: Indoor Temg k), Outdoor Temp
(°F), Set Point {F), Power of furnace (kW/h)

where N 4 1 is the number of observations used in the TABLE |: Summary results of Arizona data

parameter estimation. For time varying modé¥s,should be

large enough to obtain reliable estimates but small enough _ Room 7 (°F) Tip Em cp
for the model remains stationary. In our study, we consider Living Room  79.1244 1.8073 ~0.0103 0.0116
the cases wheréV corresponds tol, 7, and 14 days of Family Room  80.5193 ~ 2.5019  0.0249  0.0282
Kitchen 81.8173 2.1409 0.0247 0.0281
measurements. Dining Room  79.0615 14.0744  0.1355 0.1480

N . . . .

The accuracy of the model can be measured by the mean Office Room  79.8312  0.6645  0.0879  0.0956
squarednodeling error(ME) Hall 79.2009  1.1447  0.0182  0.0212
1 N Extra Room 83.0398 48.2190 0.4122 29.8200
Em = N Z ||(:Cin[t+1]_xin[t])_(éf_FOA[f(:Cout[t]_:Cin[t])_FgprVAC [t])HQ Ups. Office  78.2068 1.1281 0.0184 0.0199
—1 Ups. bath 77.8422 2.6523 0.0372 0.0412

®)

The model with estimated parameter using one set of datarhermal parameters of different rooms are summarized in
needs to be validated. To this end, we use a separate (up-use@le Il. Standard deviations of these estimates are velgti

data to test the predicability of the model. Specificallyegi

large which indicate that the model is not constant across

the estimated parametefs, j;, ¢; obtained from one data time. The non-stationarity can be observed more clearly in
set, we use a different set of data to test the accuracy of $hg. 2. Thermal parameters, modeling errors and realiaatio

one step prediction

of real temperature and predictions of living room are pldtt

"t + 1] = 2"[t] + ap (™[] — 2"[t]) + gp™C[t] + ¢f, (6)

The mean squaregrediction error (PE) is given by

N
ep = %lef"[tﬂ]—:c‘"[t+1]ll2- (7)

t=1

respectively. HVAC power efficient factar varies with time
while the modeling errors are small. An closer look at the rea
and predicted temperatures shows that the linear timeianar
model follows the real temperature accurately.

TABLE II: Thermal Parameters of Arizona house

Room

at+oqn

g * o g(°Flkwh)

z+oc(°F)

D. Results and observations

We describe in this section a summary of results and
observations, leaving more detailed description in [18} an
[19]. Given differences in weather conditions, heating aird
conditioner equipments used in the residential houses, and

Living Room
Family Room
Kitchen
Dining Room
Office Room
Hall
Extra Room
Ups. Office

consumer usage patterns, the techniques used for model iden ups. ban

0.0083 £ 0.0046
0.0127 + 0.0046
0.0121 + 0.0048
0.0209 + 0.0127
0.0168 + 0.0120
0.0101 £ 0.0051
0.0474 + 0.0388
0.0107 + 0.0048
0.0152 + 0.0070

—0.2076 £ 0.1211
—0.1798 £ 0.1608
—0.1997 £ 0.1901
—0.5438 £ 0.1768
—0.5095 £ 0.2337
—0.3314 £ 0.1787
—5.8284 + 24.6484
—0.2990 £ 0.1214
—0.4435 £ 0.6012

0.0216 £ 0.0552
0.0062 + 0.0908
0.0324 + 0.0894
—0.0047 £ 0.1201
0.0176 £ 0.0802
0.0264 + 0.0669
0.0709 + 0.3141
0.0631 £ 0.0521
0.0417 £ 0.0820

tification were slightly different. The general observativas

that the Arizona data appeared to support a more stationarBy looking at the autocorrelation of modeling and predictio
model whereas the Oregon data suggested that the statyonamirors we analyze the relationship between errors and time.
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Fig. 2: Arizona data: Top: daily parameter estimates over
time. Middle: modeling error example. Bottom:
actual and predicted indoor temperatures.

Fig. 3 peaks can be found at eved§ lags indicating daily
cycle in errors. A more comprehensive study of daily patte
may be needed.

AutoCorrelation in Room 4 HVAC 11
1A T T ;

\ \ \ \
— AutoCorrelation of Model Error‘

0.8, B -
Peak
happens

06 daily 1

0 100 200 300 400 500 600 700
Lags (96 points per day)

Fig. 3: Arizona data: Autocorrelation of modeling errors
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Fig. 4: Arizona data: Q-Q plot of modeling and prediction
errors

heating system used by the resident. Table Il summarizes th
results of house in Oregon. One day fitting one day prediction
fMethodology worked not well any more. The constanthich
stands for the un-modeled factor in the dynamic equation, is
large. One possible reason is that a two-stage furnace asit w
used in this house to heat and one constant thermal dynamic
equation can not model it when the second coil was turned
on to heat up the room rapidly. By looking at the residuals of
one day fitting one day prediction shown in Fig. 5, we observe
a daily pattern. The peaks aroufidM reflect the impact of
human activities.

TABLE Ill; Results of Oregon house

ep a+oq gtog c+oc
One day fitting 0.6471 0.0933 &+ 0.0597 0.1407 £ 0.0238 1.6986 & 1.5965
Interval fitting 0.3625 0.0259 £ 0.0274 0.1267 £ 0.1116 0.3684 £ 0.5967

A more adaptive methodology is used for model identifi-
cation. Specifically, measurements are divided into wegkda
and weekends and each day is divided ireequal intervals.
Measurements from the same intervals of previéu® 10
weekdays (weekends) are used for data training and estignati
the thermal parameters. Thus totalmodels for different time
periods are identified within a single day. The temperatures
within the interval of the target day is predicted using the
corresponding extracted parameters. For example, if tigetta

Another important factor in model validation is the Gausperiod is7TAM to 9AM on Monday, measurements fro\M

sianity of the residue error. Although a rough analysistpigt
cumulative distribution functions (CDF) of errors agaitis¢
Gaussian CDF appears to endorse a close distribution, fuktar

to 9AM on last Monday to last Friday are used to extract one
set of (as, gy, cr). We believe that this model captured the
seasonal change as well as the human activities.

examination using the Q-Q plot in Fig. 4 and Kolgomorov- Temperature prediction and parameters realization of Ore-
Smirnov test indicates that the residues are non-Gaussigon data are shown in Fig. 6. The prediction follows the dctua

Details can be found in [18].
2) The Oregon caseFor the Oregon data, we can observ
much significant non-stationarity, partly because of thecHit

temperature closely and there is a clear daily cycle in the
thermal coefficients. Q-Q plots suggests non-Gaussiarsty a
well. Details can be found in [19]
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Fig. 5: Oregon data: modeling and prediction errors of one
day fitting one day prediction method
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Fig. 6: Oregon data: Top: actual and predicted indoor
temperature. Bottom: parameter estimates in a
2 hours interval

IIl. AHEM OPTIMIZATION FRAMEWORK

other control signals from the utility. In particular, wesase
that the utility may limit the maximum power consumption
during certain days or certain hours. Other information may
also include local weather forecast.

The HEM device also interfaces with the consumer directly.
It is assumed that the consumer input desired temperature
profile that form the basis of measuring consumer satisfacti
or quality of service. For certain appliances, the consumer
specifies operation constraints. This may include, for godam
the start time and deadline of plug-in hybrid electric véhic
(PHEV) charging or other deferrable load.

We focus here the interaction between the HEM device and
the controllable appliances. This interaction is bi-dii@tal;
the HEM device takes sensor measurements and sends control
signals to individual appliances.

HEMs HVAC

S—— wm— -~
Measurements
Aggregator and P.HE
Modeling
ai'?"i'<——-
l Def
Info. Control |, lcontrollel oy
! Interface| Algorithm “ \/@
User
& L 10! Interface
1

mercdl |
Weather
Report

Fig. 7: Architecture of HEM

B. Load classes and assumptions

We consider three types of controllable demands: control-
lable dynamic load (HVAC), deferrable and interruptiblado
(PHEV charging), and deferrable and non-interruptibledloa
(such as washer and dryer). We also consider the possibility
of integrating local renewable resource (solar panel)

The model of dynamic load (HVAC) has been discussed
earlier in Section II. Implicitly assumed here is that thedmlo
used in the optimization is tracked or updated periodicallg
assume that the HVAC is subjected to on-off control only.

We consider PHEV charging as a deferrable and interrupt-
ible load. In particular, charging can be temporarily sunsjeel

We describe in this section the proposed HEM architectu@®d resumed at a different time. The charging time and amount
and related optimization with constraints. The specifichtecwithin each period are part of the optimization. The arramdl
niques used in the optimization are described in Section I\departure time of PHEV are assumed specified and a desired

A. Architecture of HEM

amount of charging should be delivered by the deadline.
Specifically, the charging deadline is a hard constrainh wit

The HEM architecture considered in this paper is generic, & higher priority than temperature comfort. Similar apjgioa
lustrated in Fig 7. As a control center, the HEM device reegivcan be found in [9]. The work presented in [20] discussed a

pricing information from the local utility or energy aggegr.

strategy that took into account battery degradation, whieh

In addition, the HEM device may also receive interruption agnore here.



YU, JIA, MURPHY-HOYE, PRATT, TONG. SUBMISSION TO IEEESMG2L 9/20/12 7

The deferrable and non-interruptible loads have the flexibi
ity of optimizing starting time. Once a task starts, it hadbé&
completed. We assume that we are given the hard constrai
on the earliest and latest starting time. We assume in the
simulation that the deferrable and non-interruptible |deaivs
constant rated poweP>.

Distributed renewable energy is considered as an additiona
power resource of the house. The solar panel is considered

inimize 32,517 B[] — d[]|?

ject to 1. (z[t], y[t]) ~ ®(As, Gy, Cy)
P € (PR, 0}

(]

w

T <s<TL

P ifs<t<s+d
Def _ rate —_
Pl = A 0 0.W.

>

as an example in this paper. During the day time, solar panel 5.0 STP:';EV[t] < P

could provide power to the house which helps to alleviate the 6. 21 TP = Q

energy and budget shortage. The output of the solar panel is TP =0 it <Tyort>Tp
assumed not controllable but predictable with noises artid no Zfoz‘ _ ™) + 1]
enough to cover all the power usage in this paper. 8. t=Tyx(i=1)+11P P

+p™[ - ) < Pi= 1, T
C. Control policy, performance measure, and constraints 9. S 2™ 8] + pPE] + p°t] — pR]) < Ba
10

Optimization is used to derive@ntrol/scheduling policy

that maps the informatio#,.,, collected via interface and the . o
measurements up to timeo the power allocation to the loadsState evolution(z[t], y[t]) ~ ®(Ay, Gy, Cy) specified by the

(P lt], pE e lt], T [t]) at the fast time scale (at intervals offtochastic thermal Qynamm equation (3). The cont_rol e
one or several minutes) (p™et], p™™[t], s) in this optimization are fast time-scale
The performance of'the control policy is measured power allocation for HVAC, PHEV and the starting time of

by consumer satisfaction. In this paper, since we imposed ferrable and non-interruptible load. Note that oncés

) .
budget constraints on energy expenditure and require thatdaetermmed, the power consumptipf?t] is fixed.

deferrable loads are served before deadlines, the consume-l;he global objective is to minimize the expected temper-

satisfaction is measured only by the temperature deviatiq’IHJre deviation over a whol_e day, where the state follows
- L the thermal dynamic model in constraint (1) and the control
from the desired set pointse., ; ; .
of HVAC is an On-off control as stated in constraint (2).
D(w)éuzﬁ(z lz"[t] — d[t]||?). (8) Constraiqts (3-4) describe the deferrable and non-inpéibie
¢ load, which has to start betweefhr and 7., and work
) _ ) consistently for timei. Constraints of PHEV are stated as (5-
We assume that the consumer is a price taker. Given g euevly] js assumed to be continuous and a desired amount

price of electricityz[t|, the cost of control policyr is given f charging,Q, is required to be delivered betwedh, and

where the indoor temperature vectof[t] is part of the

by N Tp. The total power consumption withiith hour should not
C(m)=> " 2[t x pr[t], (9) exceed the power limif; and the total cost is bounded by
t daily budgetBy,
where p™[t] = pl.[t] + pholt] + pit] is the total power  The above optimization is a mixed integer program with a
consumption within time interval. high dimensional state space. The main challenge of this opt
In addition to the thermal dynamic constraint, we impos@ization comes from the power limit and budget constramts i
the following types of constraints: (8-9) which bundle all control variables. In the next segfio

1) Budget (cost) constraintVe assume that the consumeWVe present a muIti—scaIe_ model predictive control approach
specifies a long term budget constraftin the form that unbundles these variables.
of weekly or monthly dollar amount. In our approach,
B is broken into daily budgeB,; which is adaptively
adjusted from one day to the other. See Section IV-C for |n this section, we present the multi-scale control archite
a budget allocation scheme. ture of HEM system shown in Fig. 8 based on the princi-

2) Maximum power constraintVe assume that there is aple of model predictive control. The proposed optimization
maximum power consumption limit imposed either byroblem (10) is decomposed into two time-scales. The HEM
the utility or an energy aggregator. Such a constraigystem distributes the hourly power expenditure to difiere
may be mandated as part of certain demand responrgSices at the slow time scale. In the fast time scale, HEM
program for which the consumer may receive lowereslstem measures the temperatures, extracts thermal garame
rate for accepting such limits. and predicts the thermal dynamic stafe+ k|¢] into the future

3) Scheduling constraintaVe assume that deferrable loadg;sing Kalman filter. Since loads are decoupled in the slove tim
are specified by their deadlines. Assuming feasibilitgcale, HEM system can optimize the detailed power allonatio
such scheduling constraints are always met. of loads individually at the fast time scale. In both timelssa

We now have the detailed constrained optimization asly first step is implemented and HEM system resolves the

follows problem again with latest observations.

IV. MULTI-SCALE MODEL PREDICTIVE CONTROL
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pricing the charging rate of PHEV is continuous, the fast time scale
charging problem is just a linear programming. In this paper
the electricity price is assumed constant over one hour,s0 w
omit the fast time scale problem for dryer and PHEV.
When focussing on the control problem of HVAC, we
| Measurement | are dealing with a integer programming. The fast time scale
problem of HVAC is formulated as follows:

z[t}

(Aj, Gy, Cy

Fast timepVAC [¢+] [Thermal

scale MP@P VT
P [t]

&)

dynamic

y[t]

Fig. 8: Multi-scale HEM architecture

mingg 7 Ellen[i] - dld]]?
subject to (z[i], y[i]) ~ ®(A;, G, Cr)
The MPC based suboptimal approach to the HEM stochastic pMeli] = uli] Page
problem is detailed described in Table IV. The slow and fast uli] € {0,1}
scale problems are discussed individually in this section. Zf:fl uli] < %

A. Slow time scale stochastic optimization wherep{© is the power budget assigned by the HEM device

We decompose the overall optimization (10) into two timeat the slow time scale.
scales. In the slow time scale, HEM system distributes powerThe most widely used HVAC control strategy is the rule
expenditure to different loads and decouple them from tiigised control (RBC) or bang bang control. It is a control
power limits and the budget constraints. The slow time scalestricted between a lower and an upper bound around the
problem is formulated as follows: set points [21]. In practice, the length of the interval betw
HVAC on-off states switching may be an additional constrain

P T in 2
minimize o El|af — ds . . .
241 Blle " as it influences the longevity. A benchmark solution of that fa

subject to (z,4:) ~ ®(A, G, C)

0 < phc < prvec time scale problem is to relax tiie- 1 constraint[:] € {0,1}

by a continuous oneli] € [0, 1]. The relaxed problem gives us
Te<s<Ti an lower bound of the performance. Similar relaxation peabl
o = { g)rate ';VSVS t<s+d is discussed in [22].

Within the class of integer optimization, we formulate the
problem as that given the slow time scale power expenditure,
we choose the working periods of HVAC to minimize the
deviation of indoor temperature from the set points. Onee th

0 < piMC 4 pfM™ Pt < P 4 pRe™ i =1,-.. T,  switching time is determined, the HEM can implement the
ST 2 (P 4 PP 4 B — pfere) < By control of HVAC by artificially changing the set point withbu
_ _ (11) actually installing an extra device.

Different from the fo_rrr_1u|ann of the overgll problem (1Q), Given the hourly power expenditupd”°, we calculate the
HEM system qnly optlmlzes power expenditure at slow timg, mper of working periods (minutes) of HVAC by, —
scale and™* is a continuous variable. pie/Pe]. The allocation of the working periods is for-

rate

To deal with home appliances which are starting in th@jated as a stochastic programming with a binary action
middle of a slow time scale interval, HEM system needs ig,ace, which is still computationally intractable. But wanc
scale the maximum power constraints of these loads propgfroximate this as an shortest path problem by assuming the
tional to the fraction of available working time within thatchanges of indoor and outdoor temperature are small within
interval. For example, the PHEV arrives home at 7:40 and tB@e hour. At timet, we approximate the future outdoor indoor

maximum charging rate within that hour will be setaB"=". temperature gap(z™[t + i| — 2"[t + i]), as the initial one
For simplicity, we assume all the loads start in the begignir‘(xom[t] — z"[t]).

of the intervals in this paper.

0 < pPHEY < pPHEV
Ts F_’HEVZBX

=111
pi"™ =0 ifi<Taori>1Tp

At the tth minute, denote the initial temperature difference
asR = ay(z*t] — 2"[t]) and the HVAC power effect as
- . . U 2 g; P, The future temperature &t + i 4 1)th minute
Receiving the slow time scale power expenditure as Coi'%'approximated as:
straints, HEM system schedules loads in the fast time soale t '
meet the requirements and minimize the temperature deniati
In the fast time scale problem, the MPC principle applies asz®[t + i + 1] x*t]
well, except that for HVAC and some loads we are dealing z"[t + i + 1] [t 4+ 1] + ap (@t + i) — 2"t + 1))
with integer control variables. +gPCult + i

The control problems of various devices are decomposed in [t + 4] + ap (@™t] — 2"[t])
the slow time scale problem so we can consider them indi- +gPavCult + i
vidually. The starting time of deferrable and non-intetile 2"+ (E+1) xR

determines the power allocation trivially. If we can assume +U Z};:Ou[t + k]

B. Fast time scale stochastic optimization

%

Q

%
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TABLE 1V: Model Predictive Control in Slow and

Fast Time Scales
Model Predictive Control in Slow Time Scale
1 At hourt, compute Kalman state predictions |, usingyz.
2 Obtain the optimal starting time* by minimizing the cost of deferrable loafl.
3 Solve for(p5"°, pTHEV)Ts by the quadratic optimization:

minimize 3272,y (ll2), — di)1?)

subjectto  (z4,v:) ~ ®(A, G, C)

|2 0= Phey S Thre,

0 S p; S Pmax

Sy P = (Q = A TR

PP =0 ifi<Taori>Tp

0< ﬁ:iVAC + ﬁl:HEV + ﬁ?ef < P+ ﬁlienewyi =t T
Efzst 2 (ﬁ};VAC + ﬁ?HEV + ﬁ?ef _ ﬁ?enew)

+
-1 HVAC | _PHEV , Def R
< (Bd = ko1 2Py P PR — Pkenew))

2"[t + 2]

2"t + 2] — d[t +

[t JrX

4 Setp?VAC _ ﬁ}:VAC- andpr'_EV _ ﬁI:HEV_
5 t—t+1,gotoline 1 untilt =T

<3 Model Predictive Control in Fast Time Scale
1 At minutet, compute Kalman state predictiod$' [t + k|t] usingy:.
2 Solve fora[i] by the quadratic optimization:

P Ty 2Til] — dlilll2
Fig. 9: Shortest path formulation gﬂ]?;ffé“”} (L;[Zt;[lz}‘)‘ N[ql?Af,dc[”;]f‘[ Cy)
POl = ali] PRdC, ali) € {0, 1}
S, alil = N — Y02 aljl.
The approximation problem can be formulated as follows] 3 Setult] = a[t].

at minutet, solve the dynamic programming problem: 4 t—t+1,g0to1untlt="Ty
ming; Zf:ftﬂ |z"[i] — d[4]||? . from calendar. Assuming HEM device is cooling the house,
subject to z"[t +1i] =a"[t] +i xR +uz}€;10 aft + k| one direct way is to distribute the budget in proportion te th
ZT_ft ali] = N — 2t alj) forecasted daily average outdoor temperature. Anotherisone
a[;]*e {0,1} = known as water filling in communication. Similarly, the mgne

is distributed to every particular day according to the pried

Consider a grid as shown in Fig. 9. At tinigthe vertices oytdoor temperature by solving the following optimization
are defined as the future indoor temperatures at tiner  ropjem:

1,..., Ty under different strategy scenarios and the distance
between adjacent vertices is defined as the temperatura-devi maximize Zfit log(1 + %) 12
tion of the (£ +i + 1)th minute,([[z"[t +i+1] — d[t+i+1]|%). subject to 51", By — B (12)

Going upward means the HVAC will be working for the next ) ) ) )
minute (u[t+i]=1) while going right means not (u[t+i]:0).WhereB is the tqtal budgetB, is the daily budget andy; is _
So we have a single-source (left bottom of the grid) singid€ Predicted daily average outdoor temperature. The @ptim
destination (right top of the grid) shortest path problerthvei solution can be viewed as fll!lng the daily temperature curve
gl’ld size Of(Nk _ Zi;i u[j]) x [Tf it (Nk o Zi;i u[_]])] by the budget as shown in Flg 10
This problem can be well solved by Dijkstra’s algorithm.
Considering the approximation may not be accurate, we apply X Ty
the MPC principle here. At the beginning of every minute we
solve the shortest path problem and apply the fifst and at
the beginning of the next minute we solve the updated problem
again.

It is true that the power consumed in the fast time scale
stage may be less than the power expenditure allocated in the
slow time scale stagég., p"© Z.T:fl uli] < pi*°. We just put

rate

the residual back to the budget pool and reuse it in the future

Day
C. Budget Allocation
At the beginning of a week or a month, HEM device Fig. 10: Water filling budget allocation
receives the total budget setting from the users and diséh
the money into everyday according to the weather informatio Considering that the long term weather report is not rediabl
from numerical weather report and the activity informatiomwe employ the rolling scheme here. At the end of every hour,
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if the budget is not used up, HEM device will put it back To show the performance of proposed MPC approach, it
to the rest of total budget pool and allocate the daily budgist compared with some benchmark solution using extracted

again with updated information. thermal parameters and weather information. Note that the
VS deferrable loads do not appear in the objective function and
+ SIMULATION AND PERFORMANCE RESULTS affect the discomfort level only via peak power constraarid

In this section, an scheduling example is shown at thetal economic budget. The control of HVAC is simulated and
beginning, followed by the comparison between proposegher loads are removed from these two constraints.
MPC algorithm with the RBC and other benchmarks based onjn the simulation, the benchmarks include rule based cbntro
real measurements. In the end, the shortest path perfoenaRBC), performance bound (PB) and an algorithm combining
is discussed. the MPC and the LQG (thus referred to as MPC-LQG)
First of all, scheduling of three different kinds of |Oad$)rigina||y proposed in [11]. When the constraints are Igose
without renewable energy is considered in the simulation. KIPC-LQG performs closely to LQG, which is the optimal
PHEV is assumed available from 8PM to 8AM. The chargingolution to the unconstrained stochastic programminglprob
rate is nonnegative which implies it can not supply energkbawhen the constraints are tight, the performance of MPC-
to the grid. The washer/dryer, as an example of deferratdle anQG is close to open loop control. The performance bound is
non-interruptible load, is assumed to work for 2 hourststar obtained by assuming the system noise and weather condition
no earlier than 4PM and no later than 8PM. The power ratejisthe future are perfectly known.
assumed constant. The power limits profile, simply assumed
to be a sinusoid curve, and the daily budget are constrail
given to HEM.

—+—MPC
—— MPC-LQG||
——PB

: : o RBC

‘ ‘
] o
10- 7

0 I I I I 4
0 5 10 15 20 25

Time(hour)

—+— Def Load energy
4 —o&— PHEV energy T T 2

1
Time(hour)

0 L L L L L L
10 Peak power constraint 100 150 200 250 300 350 400 450 500
—+— Total power Cost(cents)

Fig. 12: 1 day performance comparison between multi-scale

Power(kw/h) Def Load and EV(kWh) Price(cent/kWh)

% 5 10 imenoury 20 25 algorithm (MPC), MPC-LQG, PB and RBC

8 25 S ‘ ———

£ %00 | ——Realindoor Temp | Nt I Assuming the outdoor temperature follows an auto-

" g PesredTemp = 5 - regression model, the performances of algorithms are shown
- . | _Tmethoun | in Fig. 12. The discomfort level, which is measured based on
5 [ ——HvAC energy | Predicted Mean Vote (PMV) [23], against total energy cost

g7 w ] is plotted. In this paper, the tolerance region is set zex an

T % 5 ‘ : 20 2 the absolute value of temperature deviation from set points

10 _ 15
Fig. 11: Power policy exar:;?)elg?u;rice dryer and PHEV are used as PMV. In Fig. 12, at the same discomfort level,

charing, total power and peak power constraints, ~ the proposed approach saves aroR@fzh comparing to MPC-
indoor temp, HVAC LQG and spends abo8t more than the performance bound.
Comparing to RBC, the multi-scale approach maintains the
The power policy example is illustrated in Fig. 11. Recabame comfort level witt80% less cost. The performance of
that the global objective is to minimize the temperature déifferent algorithm appears the same when there is a tight
viation. The scheduling of PHEV and washer/dryer affectsudget constraint, which is because all strategies havieetim
the temperature deviation indirectly through the peak tlimpower to allocate.
constraints and economic budget constraints. In Fig. 11, toTo show the impact of model accuracy on performance of
yield budget to HVAC, the charging of PHEV is shifted taIPC, the comparison between different outdoor temperature
the price valley. The washer/dryer takes a relatively lowgrediction noise is drawn in Fig. 13. With the same power
price period because of the tighter deadline. Note that & p and budget constraints, the discomfort level of MPC reduces
power constraint is bounded in some periods and the powast with the decreasing of the noise. The performance of RBC
allocated to HVAC, with a lower priority, is limited. So thedoes not change because RBC does not rely on the forecasting.
indoor temperature deviates from the set points. When the prediction is accuracy, the gap between MPC and
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By relaxing the lower bound, we plot the performance curve

" of RBC as well as the actual performance calculated from

measurements. The simulated RBC differs from the measure-
ments because of the modeling errors. At the same comfort
level, multi-stage algorithm saves more tt#% comparing to

=
g ':AB:C the performance of RBC calculated using real measurements.
08
06 HPB
o4 45 T :
——PB
0.2 —e— MPC with real parameters
a0l a4 : —— MP((:: with estimated parameters||
0 —»— RB
1 07 05 0.3 01 o RBC from real
Outdoor temperature prediction noise amplitude *sr b
i 301 —
Fig. 13: Performance comparison between RBC, PB and 2
multi-scale algorithm (MPC) with various outdoor 21 1
temperature noises ol |
\
151 —
performance bound is negligible.

i i i i
0 500 1000 1500 2000 2500 3000 3500 4000

We compare the performance of the multi scale algorith Cost(cents)
with the real RBC control of HVAC based on the real measure-
ment data from Arizona, in Fig. 14. The discomfort level of Fig. 15: Oregon data: 5 days performance comparison
RBC is calculated from the indoor temperature measurements blsltl‘o’vgen RBC , PB and multi-scale algorithm
and the power consumption is from the power meter. In ( )
the simulation, MPC uses data from pervious day tolbwld o see the impact of renewable energy, we include the solar
the thermal model and uses the parameters. to pre_d|ct ?&Im in the optimization as an alternative power resource.
allocate power to HVAC for the next day. While the indoof;

h followi he d ) . 'Fig. 16, the output of the solar panel is assumed predictable
temperature changes following the dynamic equation Wity hoise. Since the solar power not only alleviates thekpea
the real thermal parameters of the target day. To show

Gwer limits but also the budget, the discomfort level isdow

impact of the accuracy of the thermal model, the same M vﬁth cheaper energy cost. At the same discomfort level, MPC

algorithm assuming knowing real parameters is plotted asa%orithm saves more thafi0% comparing to RBC from

comparison. At the same discomfort level of RBC, the mu“Fneasurements. While without solar power, the saving isradou

scale algorithm saves about 12% and the gap between Mgé“%
and PB is less than 2%. '

6.5 T T
35 : : —+— PB with Solar

—+— MPC with estimated Para 6 —+— MPC with real parameters and Solar
301 RBC | —+— MPC with estimated parameters and Solar
—— MPC with real Para 55F o RBC from real measurements w/o Solar
—s— Performance Bound —&— PB w/o Solar
251 * 5r —oe— MPC with real parameters, no Solar
—e— MPC with estimated parameters, no Solar
20l i 4.5 —— Estimated RBC w/o Solar
2 >
z s af 1
15F b
3.5f ]
10 3l |
5- N 1 25" 1
0 | | | | | 2+ 1
600 700 800 900 1000 1100 1200
Cost (cents) 1.5 - - - -
0 200 400 600 800 1000
Cost(cents)

Fig. 14: Arizona data: 10 days performance comparison
between RBC, PB and multi-scale algorithm

(MPC) Fig. 16: Oregon data: 1 days performance comparison

between RBC, PB and multi-scale glgorithm
(MPC) associated with solar power

A similar simulation, which heating the house instead of
cooling, is carried out based on the measurements from @regoTo show the efficiency of shortest path algorithm in fast
shown in Fig. 15. The performance of RBC is also simulatetime scale optimization we compare the shortest path approa
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with the optimal solution to the relaxed continuous prohlem(2]
In Fig. 17, simulation is carried out based on the extracted
thermal parameters. At the same comfort level, the gap s les
than 5%, which implies the performance of the shortest patig]
is a reasonable approach to approximate the original pmoble n

(5]

@
S

—— Shortest Path
—— Relaxed problem

~
=)
T

(6]

@
S
T

@
=}
T

(7]

Discomfort
w B
] S
T T

N
IS}
T

18

=
1)
T

El

0 | I I I I I |
50 100 150 200 250 300 350 400 450 500
Cost(cents)

Fig. 17: Shortest path approach vs relaxed solution (101

VI. CONCLUSION (11
A Home energy management (HEM) system, as a k

component of demand response in smart grid, should be able to
control various residential loads based on the user regeing¢ [13]
and other information. We formulate the control problem of
HEM in this paper as a multi-stage stochastic programmimngy
problem. The HEM system acts as an interface between
users and aggregators to exchange the real-time pricilmgtlsig[15
and power consumption limits. Using the measurements an
numerical weather report, the HEM system optimizes the
power allocation to minimize the user discomfort level. A8
multi-scale computationally tractable suboptimal appho&s
proposed to solve the stochastic programming problemt Firs
order thermal dynamic model is validated and online thermial
parameter estimation algorithms are tested. Based on #te re

12
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