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Abstract— The problem of stochastic deadline scheduling is important class of such algorithms is the so-calladex
considered. A constrained Markov decision process model is policies [7] that attach an index to each unfinished job,
introduced in which jobs arrive randomly at a service center  gnk them according to their indices, and assign available

with stochastic job sizes, rewards, and completion deadles. to the t ked iobs. The ind f h iob
The service provider faces random processing costs, convex processors 0 the top ranked Jobs. € Index of each Jo

non-completion penalties, and a capacity constraint thatiimits 1S determined by the state of itself and is independent of
the simultaneous processing of jobs. Formulated as a resfie the other jobs. Such policies offer scalable solutions & th

multi-armed bandit problem, the stochastic deadline schedling  ranking algorithm aligns with the objective of the schedule
problem is shown to be indexable. A closed-form expressionf o and can be computed online.

the Whittle’s index is obtained for the case when the proceasy
costs are constant. An upper bound on the gap-to-optimalityof

the Whittle'’s index policy is established, and the bound islsown A. Summary of results ) )

to converge to zero as the job arrival rate and the the number In this paper, we formulate the stochastic deadline schedul

of simultaneously available processors increase simultaously. ing problem as a restless multi-armed bandit (RMAB) prob-
lem [8]. We examine the indexability of the problem and
the performance of the Whittle’s index policy. To this end,
we first introduce a constrained Markov decision process
The deadline scheduling problem, in its most generigVDP) model with the objective of maximizing expected
setting, is the scheduling of jobs with different workloadgdiscounted) profit subject to a constraint on the maximum
and deadlines for completion. Typically, there are not @fou number of jobs that can be processed simultaneously. The
servers to satisfy all the demand; the cost of processing magnstructed MDP model captures the randomness in job
vary with time, and unfinished jobs by their deadlines incugrrivals, job sizes, deadlines, and processing costs.
a penalty. Next, we reformulate the MDP as an RMAB problem with
In this paper, we are interested in th®chastic deadline simultaneous plays [8] and establish the indexability @ th
scheduling problenwhere key parameters of the problemformulated RMAB. The special structure of the problem, in
such as job arrivals, workloads, deadlines of completiad, a particular, the pre-determined deadline and workload at th
processing costs are stochastic. In particular, we contiée time of arrival, simplifies the computation of the Whittle’s
problem of maximizing the average or discounted rewardgdex. For the case with constant processing cost, we derive
over a finite or an infinite scheduling horizon. the Whittle’s indexes in closed form.
A prototype application of such a problem is the charging The Whittle’s index policy, unfortunately, is not optimal
of electric vehicles (EVs) at a charging service center [1jn general when the constraint on the number of processors
[2]. In such applications, EVs arrive at the service centefat can be activated is strict. We obtain a bound on the gap-
randomly, each with its own charging demand and deadling-optimality for the Whittle’s index policy and show théuiet
for completion. The charging cost depends on the cogfap approaches zero exponentially as the number of awailabl
of electricity at the time of charging, and a penalty isprocessors and the job arrival rate increase simultangousl
imposed when the service provider is unable to fulfill therhis result provides a theoretical justification for usitg t
request. Similar applications include the scheduling &ijo Wwhittle’s index policy as a baseline approach in appligaio
at data centers [3], internet streaming [4], hospitals §5d  where job arrivals are in the light traffic regime.
customer service centers [6].
The stochastic deadline scheduling problem is an instanEe Related Work
of stochastic dynamic programming, for which obtaining The classical deadline scheduling problem is first consid-
the optimal solution is fundamentally intractable. Howevered by Liu and Layland [9] in a deterministic setting. Faa th
er, practical applications often mandate that the prongssisingle processor case, the results are quite complete. When
schedule be constructed in real time. This means that, &)l jobs can be finished on time, simple index algorithms
general, one may have to sacrifice optimality in favor ofwith linear complexity) such as the earliest deadline first
approximate solutions that are scalable algorithmicatig a (EDF) [9], [10] and the least laxity first (LLF) [11] achieve
have performance close to that of the optimal scheduler. Ahe same performance as the optimal off-line algorithm in
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The literature on deadline scheduling in the stochastic job is removed from the queue, regardless whethzer the
settings is less extensive. Panwar, Towsley and Wolf in  job is completed. When théh position is available,
[14] and [15] made early contributions in establishing the  with probability Q(7, B) a new job with deadline
optimality of EDF in minimizing the unfinished work when and workloadB arrives. With probabilityQ(0, 0), the
there is a single processor, and the jobs are non-preemptive position remains empty. The jobs arrived at different
The performance of EDF is quantified in the heavy traffic ~ positions are statistically independent and identically
regime using a diffusion model in [16], [17], [18]. distributed.

The multiprocessor stochastic deadline scheduling prob-\We now define the constrained MDP by defining the
lem is less understood, primarily because the stochastgate, the action of the scheduler, reward, the state éwn|ut
dynamic programming for such problems are intractable teonstraints, and the decision policy.
solve in practice. A particularly relevant class of apptiizas 1) State SpaceConsider first the state of théh position
is scheduling in wireless networks where job (packetsyalri in the queue. Lef; [t] £ {, — t be the lead time to deadline
is stochastic, and packets sometimes have deadlines fgr and B;[t] is the remaining job length, as illustrated in
delivery. In [19], the author analyzed the performance ef thFigure[].

EDF policy for packets delivery in tree networks. Related The state of theth position in the queue is defined as
problems of scheduling packets with deadlines in ad hoc . . . . .
networks are studied in [23]. Si[t]é { (0,0) if no JO.b waits at theith position,

The work closest to ours is [20] where the deadline (Tilt], Bilt]) - otherwise,
scheduling problem is formulated as an RMAB problem an@he processing cogft] is an exogenous finite state Markov
the indexability is established. There are, however, sgverchain with transition probability matri¥® = [P, ;].
important differences between [20] and this work. First, in The state of the MDP is defined by the queue states and
[20], the arrivals are periodic or simultaneous. In our workthe processing costlt] as S[t]é(c[t], Si[t],---,Sn[t]) €S
the arrival is random. Second, the unit job length is assumeghd S the state space.
in [20] while in our work the job length is stochastic.

Finally, there is no analytical study about the performanfce Bili]
the Whittle’s index policy for deadline scheduling probem Job J; _ Ll

before. ‘ | time
rp d;

Il. PROBLEM FORMULATION

In thi ti introd th tochastic deadli Fig. 1. An illustration for the position’s state; is the arrival time of a
n IS secton, we Introduce € stochasuc deadlingy o position:, d; the deadline for completionB; [¢] the job length to be

scheduling problem as a constrained MDP followed by atompleted byd;, T;[t] the lead time to deadline.
RMAB formulation.

_ ) ) ) 2) Action: The action of the scheduler in slois defined
A. Stochastic Deadline Scheduling as a Constrained MDFyy the binary vectora[t] = (ayt], -, an[t]) € {0,1}V

We begin with a set of nominal assumptions in setting uptherea;[t] = 1 means that a processor is assigned to work
the MDP formulation: on the job at position, for which the position is referred

Al. The time is slotted, indexed by asactive The complementy;[t] = 0, is when positioni is

A2. There areM processors available at all times. EactP@SSivei.e., no processor is assigned. For convenience, we
processor can only work on one job in a time slot an@!low a position without a job to be activated, in which case

each job can receive services from only one processépe processor assigned receives no reward and incurs no cost

A processor can be switched from one job to another 3) State Evolution:The evolution of the processing cost
without incurring switching cost. is according to the transition matrik and independent of

A3. If a processor works on a job in time slqtit receives th€ actions taken by the scheduler.
a unit payment and incurs a time varying cog}. Here 1€ €volution of the queue stai;[t] depends on the

we assume thatlf] is a stationary Markov process with Scheduling actior; ]
transition probability matrixP? = [P, ;]. g 10— (Ti[t] — 1,(Bi[t] — ai[th) ) Ti[t] > 1,
A4. If a job is not completed by its deadline, a penalty ilt+1]= (T, B) with prob.Q(T,B) Tit] <1

defined by a convex function of the amount of unfin- ' (1)
ished job is imposed on the scheduler at the end of thehere b* = max(b,0). Note that whenT;[t] = 1, the
deadline. deadline is due in slot and job in positioni is removed.

A5. A newly arrived job will be randomly assigned to aWith probability Q(7, B), some new job with lead tim&
position in a queue of siz&/ waiting for processing. and job sizeB arrives at the beginning of slat+ 1.
Here we assume th&f >> 1 and ignore the cases when 4) Reward:For each job, the scheduler obtains one unit of
there is no holding space for a newly arrived job. reward if the job is processed for one time slot. At the job’s
AB. A job assigned to théh position of the queue at timte  deadlinej.e.,T;[t] = 1, the scheduler pays the penalty for the
revealsB;—the total amount of job to be completed—unfinished work. Let”(B) be the convex penalty function of
and T;—the deadline for completion. At + T;, the the amountB of the unfinished job, and’(0) = 0. Denote



the cost of processing at timeby c[t]. Thus the reward the constraint on the maximum number of arms that c%m be
collected from jobi at timet is given by activated in the original MDP problem can be transformed to
an equality constraint. The reformulated RMAB problem has
N + M arms. We let{1,---, N} be the set of regular arms

(1~ cli)ailt] Bilt] > 0,7, > 1 9
—{ (1= dailt] - F(Bi[t] — ai[t]) Bilt] > 0, T3] = 1 that generate reward (penalty) aft¥ + 1,---, N + M} be
0 otherwise the set of dummy arms.

@ - We define the extended state of each arm as
Si[t] = (S;[t], c[t]), and denote the extended state space as

7 28, xS.. The state transition of each arm and the

associated rewards are inherited frdodi{{1-2) of the original

MDP. The corresponding RMAB problem is defined by

5) Objective:Given the initial system stat&[0] = s and a
policy 7 that maps each system statg] to an action vector
a[t], the expected discounted system reward is defined by

co N

Gr(s) 2K, <Z S B! Rayguy(Silt], cft]) | S10] = s) , sup, B { X520 SN B Ry (Si18)) | Sil0]}

t=0 i=1 3) st. SN =M, Vit
whereE, is the conditional expectation over the randomneds (5), the arms are coupled by the processing cost and are
in costs and job arrivals under a given scheduling poticy not independent.
and0 < 8 < 1 the discount factor. The analysis can be
extended to the average case [21].

6) Constrained MDP and Optimal Policie$le impose a
constraint on the maximum number of Brocessors that can
activated simultaneously. Specifically,," a;[t] < M. This A. Indexability
constraint represents the processing capacity of thecgervi consider the-subsidizedsingle arm reward maximization
provider. For the EV charging application, this assumptioproblem [8] that looks for a policyr to activate/deactivate
translates directly to the physical power limit imposedio@ t the arm to maximize the discounted accumulative reward:

(®)

IIl. WHITTLE' SINDEX PoLICY

To pursue the deadline scheduling problem as an RMAB,
we need to establish the indexability of the RMAB.

charging facility. Thus, the deadline scheduling problean c 0o
then be formulated as a constrained MDP. V¥ (s) =sup E, (Z gtRZi[t](gi[t]) | S;[0] = S) . (6)
G(s) = Gx(5), 4 N _ o
(5) I :,}1[5<M7 Vil (5) @ where the subsidized reward is modified single arm reward
LT iven b
whereaT[t] is the action sequence generated by pofidpr @ . Y . -
positioni. A policy 7* is optimal if G- (s) = G(s). Without Ry 1(Silt]) = Ra,(Silt]) + v1(ailt] = 0),
loss of optimality, we will restrict our attention to statiary where 1(-) is the indicator function. In words, the-
policies [22]. subsidizedproblem is a modification of the reward such
that the scheduler receives a subsidyhenever the arm

B. An RMAB Problem . .
is passive.

Unfortunately, the MDP formulation does not result in a Let £, be an operator oi;” defined by
scalable optimal scheduling policy due to the fact that the }
Silt] = s,a4[t] = a) .

state space grows exponentially with. (L V) (s) 2R (V;’(S’Z— [t+1])
Alternately, we seek to obtain aimdex policy[7] that
scales linearly withN. We identify each position in the The maximum discounted rewakd (-) in (@) is determined
queue as an arm and formulaé (4) as an RMAB problerby the Bellman equation
To this end, “playing” an arm is equivalent to assigning a
processor to process the job (if there is one) at a location Vi (s) = max {Rg(s) +ﬁ(£aVi”)(s)}. @
in the queue. The resulting multi-armed bandit problem is a€{0.1}
restless because the state of positiertheith arm—evolves  Let.¥; be the space of extended state of d@rand.7;(v)
regardless whether ariris active or passive. Note, however,the set of states under which it is optimal to take the passive
that the evolution of the state of an arm is deterministic imction in the v-subsidy problem. Thendexability of the
nature. RMAB s defined by the monotonicity of/;(v) as subsidy
A complication of casting{4) as an RMAB problem comesevel v increases:
from the inequality constraint on the maximum number Definition 1 (Indexability [8]): Arm i is indexable if the
of simultaneously activated positions; the standard RMABet .¥;(v) increases monotonically frorfi to .%; as v in-
formulation imposes an equality constraint on the numbeareases from-oo to +o0c. The RMAB problem is indexable
of arms that can be activated. This can be circumventdflall arms are indexable.
by introducingM dummy arms and requiring that exactly We establish the indexability for the stochastic deadline
M arms must be activated in each time slot. Specificallscheduling problem.
each dummy arm always accrues a zero reward, and theLemma 1 (Indexability)Each arm is indexable, and the
state stays af; = (0,0). With the addition of dummy arms, RMAB problem [3) is indexable.




. . N . . 4
B. Whittle’s Index Policy gap-to-optimality as a function a¥/, the maximum number

Given the definition of indexability, the Whittle’s index is Of available processors. _ _
defined as follows. Theorem 1:Let G(s) be the value function achieved by

Definition 2 (Whittle’s index [8]):If arm i is indexable, the optimal scheduler defined il (4) attkmas(s) be that
its Whittle’s index v;(s) of states is the infimum of the by the Whittle's index policy, respectively. We have

subsidyr under which the passive action is optimal at state C

s, i.e., G(S) — GrvAB (S) < mE[I[t”I[t] > M]PT(I[t] > M),
s . v 9)

vi(s) = inf, {v: Ro(s) + v + B(LoV}")(s) whereI[] is the number of jobs ever in the queue within
> Ri(s) + B(L1V})(s)} time [t — T+ 1,t], T the maximum lead time of jobs, and

Thus if armi is indexable, any < v;(s) makes activating a constant determined by the processing cost and the penalty
arm+ optimal. Likewise, any > v;(s) makes it optimal to  of non-completion.

deactivate arm. Proof: The proof can be found in Appendix D of [24].
We can compute the Whittle’s index using a parametric m

programming method [23]. The special structure of the \when the traffic is heavy and the processing limit gets

deadline problem, however, allows us to have a closed-forfiyhter, the gap-to-optimality is bounded by the event @& th

solution when the processing cost is constant. arrival exceeding the processing capacity. In finance #nea,
Lemma 2:1f c[t] = ¢, for all ¢, the Whittle’s index of a conditional expectation in the right hand side (RHS)[df (9)
regular armi € {1,---, N'} is given by is connected to the conditional value at risk (CVaR) [25].
vi(T, B, co) CVaR measures the expected losses at some risk level and
0 if B=0, is extremely important in the risk management.

We now apply Theorel 1 to gain insights by considering

_) -« f1<B=<T-1, special distributions (on the arrival process) of pradtica
1 —cot+ . significance.
BTN F(B-T+1)-FB-T)] if T<B. Proposition 1: 1. Supposel(t) follows a Poisson dis-
_ _ . 8 tribution with mean), then
The Whittle’s index of a dummy arm is zero. N
G G - C AMFle=MM +1) 10
vi(0,0,¢0) =0, i€ {N+1,---,N+ M} (s) — RMAB(S)_l_ﬁ ESESNIN (10)

In @), when it is feasible to finish joly's request i¢e. ) . 0 ) .
its lead time is no less than its remaining processing time), ~SPecially, ifA = M?,6 < 1, the right hand side of (10)
job i's Whittle’s index is simply the (per-unit) processing _ Jecreases supper exponentially to zerdiasncreases.
profit 1 — ¢;. When a non-completion penalty is inevitable, 2. Supposd (t) follows a Binomial distribution with mean

the index takes into account both the processing profit and V2 < M, then

the non-completion penalty. We note that the Whittle’s inde C  NM?*pM(1 — p)N-M+1

gives higher priority to jobs with less laxity. Here, the itgix G(s) — Grwag(s) < 1— 8 M\(N = M)((M = Np)

of job i is defined asl.[f] 2 Ti[] — Biff] (cf. Fig.). 1)
Given the definition of Whittle’s index, the Whittle’s index Specially, if the processing capacity grows faster than

policy for the deadline scheduling problem is stated as the average arrival ratée., M = aN for a € (p,1),

follows. then the right hand side (RHS) df {11) decreases sub-
Definition 3 (Whittle’s index policy)For the RMAB exponentially to zero a8/ increases.

problem defined in[{5), the Whittle’s index policy sorts all Proof: The proof can be found in Appendix E of [24].

arms by their Whittle’s indices in a descending order and ]

activates the firsfl/ arms. We note that Proposition] 1 characterizes the asymptotic

Since the states of jobs and processing cost are finiteptimality of Whittle’s index policy when the arrival of jeb
the Whittle’s index can be computed off-line. In real-timeand the processing capacity grow simultaneously while the
scheduling, at the beginning of each time slot, the scheduleverall system remains stable.
looks up the indices for each job and processes the ones with

highest indices. When there is a tie, the scheduler breaks th V. NUMERICAL RESULTS

tie randomly with a uniform distribution. In this section, results of numerical experiments are pre-
sented to compare the performance of the Whittle’s index
IV. ASYMPTOTIC OPTIMALITY policy with other simple heuristic (index) policieise., EDF

We note that the Whittle’s index policy is not optimal in (earliest deadline first) [9] and LLF (least laxity first) [10
general. Indeed, counterexamples show that there does notf feasible, EDF processe¥ jobs with the earliest dead-
exist an optimaindex policythat schedules jobs accordinglines, and LLF processe¥ jobs with the least laxity. Both
to the order of jobs’ indices that are computed based gwolicies will fully utilize the processing capacity and imate
jobs’ current states [24]. In the following theorem, for theM jobs as long as there are at ledgtunfinished jobs in the
Whittle’s index policy, we establish an upper bound on theystem. The Whittle’s index policy, on the other hand, ranks



(4]

—®— G(s) — Gepf(s)
—O— G(s) — GLLF(9)
—<4— G(s) — Grma (s
=—8&— Bound in [I0)

(5]
(6]

Total rewards difference

(7]

(8]
El

Fig. 2. Comparison of the total rewards achieved by threferdifit index [10]
policies under dynamic processing co§(0,0) = 0.3, T'=12, B =9,
B8 =0.999, F(B) = 0.2B2, § = 0.999, N = 1000.

[11]
all positions by the Whittle’s index and activates the fik$t [12]

arms, and may put some (regular) positions idle (deactiyate
when the processing cost is high.
. : ; [13]

In Figure[2, simulation results are presented to compare
the performance achieved by various heuristic policiestand
validate the theoretic results established in Propodiiorhe
arrival sequence withifl" time slots follows a Poisson pro-
cess with mead/%999, We fix the queue siz& = 1000 and
vary the processing capacity as a parameter. The dynamic[15]
cost evolves according to a Markovian model that is trained
using real-time electricity price signals from the Calif@
Independent System Operator (CAISO) (cf. Sections I ang®
V of [26]). Each time slot of the constructed Markov chain17]
lasts for 1 hour and the entire simulation horizon lasts for
300 days (with24 x 300 time slots). [

The EDF and LLF policies do not take into account the
dynamics of processing costs, and their gap—to—optimali(t%
increases as both the job arrival rate and processing dgpa
grow. On the other hand, the gap between the total rewards
achieved by the Whittle’s index policy and the optimal pplic [20]
quickly decreases to zero as the system scales.

18]

VI. CONCLUSION [21]

We considered the problem of large scale deadline
scheduling—a problem that has wide applications in calk2]
centers, cloud computing, and EV charging. In such setting[%]
it is essential to develop efficient on-line scheduling algo
rithms. To this end, the index policy proposed in this paper
is attractive for its implementation simplicity, versdgilin

incorporating various operation uncertainties, and asgtitp  [24]
optimality.

[25]
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