
Deadline Scheduling as Restless Bandits

Zhe Yu†, Yunjian Xu‡, and Lang Tong†

Abstract— The problem of stochastic deadline scheduling is
considered. A constrained Markov decision process model is
introduced in which jobs arrive randomly at a service center
with stochastic job sizes, rewards, and completion deadlines.
The service provider faces random processing costs, convex
non-completion penalties, and a capacity constraint that limits
the simultaneous processing of jobs. Formulated as a restless
multi-armed bandit problem, the stochastic deadline scheduling
problem is shown to be indexable. A closed-form expression of
the Whittle’s index is obtained for the case when the processing
costs are constant. An upper bound on the gap-to-optimalityof
the Whittle’s index policy is established, and the bound is shown
to converge to zero as the job arrival rate and the the number
of simultaneously available processors increase simultaneously.

I. I NTRODUCTION

The deadline scheduling problem, in its most generic
setting, is the scheduling of jobs with different workloads
and deadlines for completion. Typically, there are not enough
servers to satisfy all the demand; the cost of processing may
vary with time, and unfinished jobs by their deadlines incur
a penalty.

In this paper, we are interested in thestochastic deadline
scheduling problemwhere key parameters of the problem
such as job arrivals, workloads, deadlines of completion, and
processing costs are stochastic. In particular, we consider the
problem of maximizing the average or discounted rewards
over a finite or an infinite scheduling horizon.

A prototype application of such a problem is the charging
of electric vehicles (EVs) at a charging service center [1],
[2]. In such applications, EVs arrive at the service center
randomly, each with its own charging demand and deadline
for completion. The charging cost depends on the cost
of electricity at the time of charging, and a penalty is
imposed when the service provider is unable to fulfill the
request. Similar applications include the scheduling of jobs
at data centers [3], internet streaming [4], hospitals [5],and
customer service centers [6].

The stochastic deadline scheduling problem is an instance
of stochastic dynamic programming, for which obtaining
the optimal solution is fundamentally intractable. Howev-
er, practical applications often mandate that the processing
schedule be constructed in real time. This means that, in
general, one may have to sacrifice optimality in favor of
approximate solutions that are scalable algorithmically and
have performance close to that of the optimal scheduler. An

Z. Yu† and L. Tong† are with the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY 14853, USA. Y. Xu‡ is with the School of Engineering
Systems and Design Pillar, Singapore University of Technology and Design, Singapore,
487372. Email:{zy73,lt35}@cornell.edu, yunjian xu@sutd.edu.sg.
This work is supported in part by the National Science Foundation under Grant CNS-
1248079.

important class of such algorithms is the so-calledindex
policies [7] that attach an index to each unfinished job,
rank them according to their indices, and assign available
processors to the top ranked jobs. The index of each job
is determined by the state of itself and is independent of
the other jobs. Such policies offer scalable solutions if the
ranking algorithm aligns with the objective of the scheduler
and can be computed online.

A. Summary of results

In this paper, we formulate the stochastic deadline schedul-
ing problem as a restless multi-armed bandit (RMAB) prob-
lem [8]. We examine the indexability of the problem and
the performance of the Whittle’s index policy. To this end,
we first introduce a constrained Markov decision process
(MDP) model with the objective of maximizing expected
(discounted) profit subject to a constraint on the maximum
number of jobs that can be processed simultaneously. The
constructed MDP model captures the randomness in job
arrivals, job sizes, deadlines, and processing costs.

Next, we reformulate the MDP as an RMAB problem with
simultaneous plays [8] and establish the indexability of the
formulated RMAB. The special structure of the problem, in
particular, the pre-determined deadline and workload at the
time of arrival, simplifies the computation of the Whittle’s
index. For the case with constant processing cost, we derive
the Whittle’s indexes in closed form.

The Whittle’s index policy, unfortunately, is not optimal
in general when the constraint on the number of processors
that can be activated is strict. We obtain a bound on the gap-
to-optimality for the Whittle’s index policy and show that the
gap approaches zero exponentially as the number of available
processors and the job arrival rate increase simultaneously.
This result provides a theoretical justification for using the
Whittle’s index policy as a baseline approach in applications
where job arrivals are in the light traffic regime.

B. Related Work

The classical deadline scheduling problem is first consid-
ered by Liu and Layland [9] in a deterministic setting. For the
single processor case, the results are quite complete. When
all jobs can be finished on time, simple index algorithms
(with linear complexity) such as the earliest deadline first
(EDF) [9], [10] and the least laxity first (LLF) [11] achieve
the same performance as the optimal off-line algorithm in
the deterministic setting. There is also a substantial litera-
ture on deadline scheduling with multiple processors (for a
survey, see [12]). It is shown in [13] that optimal online
scheduling policies do not exist in general for the worst case
performance measure.



2
The literature on deadline scheduling in the stochastic

settings is less extensive. Panwar, Towsley and Wolf in
[14] and [15] made early contributions in establishing the
optimality of EDF in minimizing the unfinished work when
there is a single processor, and the jobs are non-preemptive.
The performance of EDF is quantified in the heavy traffic
regime using a diffusion model in [16], [17], [18].

The multiprocessor stochastic deadline scheduling prob-
lem is less understood, primarily because the stochastic
dynamic programming for such problems are intractable to
solve in practice. A particularly relevant class of applications
is scheduling in wireless networks where job (packets) arrival
is stochastic, and packets sometimes have deadlines for
delivery. In [19], the author analyzed the performance of the
EDF policy for packets delivery in tree networks. Related
problems of scheduling packets with deadlines in ad hoc
networks are studied in [23].

The work closest to ours is [20] where the deadline
scheduling problem is formulated as an RMAB problem and
the indexability is established. There are, however, several
important differences between [20] and this work. First, in
[20], the arrivals are periodic or simultaneous. In our work,
the arrival is random. Second, the unit job length is assumed
in [20] while in our work the job length is stochastic.
Finally, there is no analytical study about the performanceof
the Whittle’s index policy for deadline scheduling problems
before.

II. PROBLEM FORMULATION

In this section, we introduce the stochastic deadline
scheduling problem as a constrained MDP followed by an
RMAB formulation.

A. Stochastic Deadline Scheduling as a Constrained MDP

We begin with a set of nominal assumptions in setting up
the MDP formulation:

A1. The time is slotted, indexed byt.
A2. There areM processors available at all times. Each

processor can only work on one job in a time slot, and
each job can receive services from only one processor.
A processor can be switched from one job to another
without incurring switching cost.

A3. If a processor works on a job in time slott, it receives
a unit payment and incurs a time varying costc[t]. Here
we assume thatc[t] is a stationary Markov process with
transition probability matrixP = [Pi,j ].

A4. If a job is not completed by its deadline, a penalty
defined by a convex function of the amount of unfin-
ished job is imposed on the scheduler at the end of the
deadline.

A5. A newly arrived job will be randomly assigned to a
position in a queue of sizeN waiting for processing.
Here we assume thatN ≫ 1 and ignore the cases when
there is no holding space for a newly arrived job.

A6. A job assigned to theith position of the queue at timet
revealsBi—the total amount of job to be completed—
and Ti—the deadline for completion. Att + Ti, the

job is removed from the queue, regardless whether the
job is completed. When theith position is available,
with probability Q(T,B) a new job with deadlineT
and workloadB arrives. With probabilityQ(0, 0), the
position remains empty. The jobs arrived at different
positions are statistically independent and identically
distributed.

We now define the constrained MDP by defining the
state, the action of the scheduler, reward, the state evolution,
constraints, and the decision policy.

1) State Space:Consider first the state of theith position
in the queue. LetTi[t] , di − t be the lead time to deadline
di, andBi[t] is the remaining job length, as illustrated in
Figure 1.

The state of theith position in the queue is defined as

Si[t]
∆
=

{

(0, 0) if no job waits at theith position,
(Ti[t], Bi[t]) otherwise,

The processing costc[t] is an exogenous finite state Markov
chain with transition probability matrixP = [Pi,j ].

The state of the MDP is defined by the queue states and
the processing costc[t] asS[t]

∆
=(c[t], S1[t], · · · , SN [t]) ∈ S

andS the state space.

time
t

JobJi

ri

Ti[t]

Bi[t]
Li[t]

di

Fig. 1. An illustration for the position’s state.ri is the arrival time of a
job at positioni, di the deadline for completion,Bi[t] the job length to be
completed bydi, Ti[t] the lead time to deadline.

2) Action: The action of the scheduler in slott is defined
by the binary vectora[t] = (a1[t], · · · , aN [t]) ∈ {0, 1}N

whereai[t] = 1 means that a processor is assigned to work
on the job at positioni, for which the position is referred
as active. The complement,ai[t] = 0, is when positioni is
passive, i.e., no processor is assigned. For convenience, we
allow a position without a job to be activated, in which case
the processor assigned receives no reward and incurs no cost.

3) State Evolution:The evolution of the processing cost
is according to the transition matrixP and independent of
the actions taken by the scheduler.

The evolution of the queue stateSi[t] depends on the
scheduling actionai[t]:

Si[t+ 1] =

{

(Ti[t]− 1, (Bi[t]− ai[t])
+) Ti[t] > 1,

(T,B) with prob.Q(T,B) Ti[t] ≤ 1.
(1)

where b+ = max(b, 0). Note that whenTi[t] = 1, the
deadline is due in slott and job in positioni is removed.
With probability Q(T,B), some new job with lead timeT
and job sizeB arrives at the beginning of slott+ 1.

4) Reward:For each job, the scheduler obtains one unit of
reward if the job is processed for one time slot. At the job’s
deadline,i.e.,Ti[t] = 1, the scheduler pays the penalty for the
unfinished work. LetF (B) be the convex penalty function of
the amountB of the unfinished job, andF (0) = 0. Denote



3
the cost of processing at timet by c[t]. Thus the reward
collected from jobi at time t is given by

Rai[t](Si[t], c[t])

=







(1 − c[t])ai[t] Bi[t] > 0, Ti[t] > 1
(1 − c[t])ai[t]− F (Bi[t]− ai[t]) Bi[t] > 0, Ti[t] = 1
0 otherwise.

(2)
5) Objective:Given the initial system stateS[0] = s and a

policy π that maps each system stateS[t] to an action vector
a[t], the expected discounted system reward is defined by

Gπ(s)
∆
=Eπ

(

∞
∑

t=0

N
∑

i=1

βtRai[t](Si[t], c[t]) | S[0] = s

)

,

(3)
whereEπ is the conditional expectation over the randomness
in costs and job arrivals under a given scheduling policyπ

and 0 < β < 1 the discount factor. The analysis can be
extended to the average case [21].

6) Constrained MDP and Optimal Policies:We impose a
constraint on the maximum number of processors that can be
activated simultaneously. Specifically,

∑N

i ai[t] ≤ M . This
constraint represents the processing capacity of the service
provider. For the EV charging application, this assumption
translates directly to the physical power limit imposed on the
charging facility. Thus, the deadline scheduling problem can
then be formulated as a constrained MDP.

G(s) = sup
{π:

∑
N

i
aπ

i
[t]≤M, ∀t}

Gπ(s), (4)

whereaπi [t] is the action sequence generated by policyπ for
positioni. A policy π∗ is optimal ifGπ∗(s) = G(s). Without
loss of optimality, we will restrict our attention to stationary
policies [22].

B. An RMAB Problem

Unfortunately, the MDP formulation does not result in a
scalable optimal scheduling policy due to the fact that the
state space grows exponentially withN .

Alternately, we seek to obtain anindex policy [7] that
scales linearly withN . We identify each position in the
queue as an arm and formulate (4) as an RMAB problem.
To this end, “playing” an arm is equivalent to assigning a
processor to process the job (if there is one) at a location
in the queue. The resulting multi-armed bandit problem is
restless because the state of positioni—theith arm—evolves
regardless whether armi is active or passive. Note, however,
that the evolution of the state of an arm is deterministic in
nature.

A complication of casting (4) as an RMAB problem comes
from the inequality constraint on the maximum number
of simultaneously activated positions; the standard RMAB
formulation imposes an equality constraint on the number
of arms that can be activated. This can be circumvented
by introducingM dummy arms and requiring that exactly
M arms must be activated in each time slot. Specifically,
each dummy arm always accrues a zero reward, and the
state stays atSi = (0, 0). With the addition of dummy arms,

the constraint on the maximum number of arms that can be
activated in the original MDP problem can be transformed to
an equality constraint. The reformulated RMAB problem has
N +M arms. We let{1, · · · , N} be the set of regular arms
that generate reward (penalty) and{N + 1, · · · , N +M} be
the set of dummy arms.

We define the extended state of each arm as
S̃i[t] , (Si[t], c[t]), and denote the extended state space as
Si , Si × Sc. The state transition of each arm and the
associated rewards are inherited from (1-2) of the original
MDP. The corresponding RMAB problem is defined by

supπ Eπ

{

∑∞
t=0

∑N+M

i=1 βtRai[t](S̃i[t]) | S̃i[0]
}

s.t.
∑N+M

i=1 ai[t] = M, ∀ t.
(5)

In (5), the arms are coupled by the processing cost and are
not independent.

III. W HITTLE ’ S INDEX POLICY

To pursue the deadline scheduling problem as an RMAB,
we need to establish the indexability of the RMAB.

A. Indexability

Consider theν-subsidizedsingle arm reward maximization
problem [8] that looks for a policyπ to activate/deactivate
the arm to maximize the discounted accumulative reward:

V ν
i (s) = sup

π

Eπ

(

∞
∑

t=0

βtRν
ai[t]

(S̃i[t]) | S̃i[0] = s

)

, (6)

where the subsidized reward is modified single arm reward
(2) given by

Rν
ai[t]

(S̃i[t]) = Rai[t](S̃i[t]) + ν1(ai[t] = 0),

where 1(·) is the indicator function. In words, theν-
subsidizedproblem is a modification of the reward such
that the scheduler receives a subsidyν whenever the arm
is passive.

Let La be an operator onV ν
i defined by

(LaV
ν
i )(s) , E

(

V ν
i (S̃i[t+ 1])

∣

∣

∣

∣

S̃i[t] = s, ai[t] = a

)

.

The maximum discounted rewardV ν
i (·) in (6) is determined

by the Bellman equation

V ν
i (s) = max

a∈{0,1}

{

Rν
a(s) + β(LaV

ν
i )(s)

}

. (7)

Let Si be the space of extended state of armi andSi(ν)
the set of states under which it is optimal to take the passive
action in theν-subsidy problem. Theindexability of the
RMAB is defined by the monotonicity ofSi(ν) as subsidy
level ν increases:

Definition 1 (Indexability [8]): Arm i is indexable if the
set Si(ν) increases monotonically from∅ to Si as ν in-
creases from−∞ to +∞. The RMAB problem is indexable
if all arms are indexable.

We establish the indexability for the stochastic deadline
scheduling problem.

Lemma 1 (Indexability):Each arm is indexable, and the
RMAB problem (5) is indexable.



4
B. Whittle’s Index Policy

Given the definition of indexability, the Whittle’s index is
defined as follows.

Definition 2 (Whittle’s index [8]): If arm i is indexable,
its Whittle’s index νi(s) of state s is the infimum of the
subsidyν under which the passive action is optimal at state
s, i.e.,

νi(s) , infν{ν : R0(s) + ν + β(L0V
ν
i )(s)

≥ R1(s) + β(L1V
ν
i )(s)}.

Thus if armi is indexable, anyν < νi(s) makes activating
arm i optimal. Likewise, anyν ≥ νi(s) makes it optimal to
deactivate armi.

We can compute the Whittle’s index using a parametric
programming method [23]. The special structure of the
deadline problem, however, allows us to have a closed-form
solution when the processing cost is constant.

Lemma 2: If c[t] = c0 for all t, the Whittle’s index of a
regular armi ∈ {1, · · · , N} is given by

νi(T,B, c0)

=



















0 if B = 0,

1− c0 if 1 ≤ B ≤ T − 1,

1− c0+
βT−1[F (B − T + 1)− F (B − T )] if T ≤ B.

(8)
The Whittle’s index of a dummy arm is zero.

νi(0, 0, c0) = 0, i ∈ {N + 1, · · · , N +M}.
In (8), when it is feasible to finish jobi’s request (i.e.

its lead time is no less than its remaining processing time),
job i’s Whittle’s index is simply the (per-unit) processing
profit 1 − c0. When a non-completion penalty is inevitable,
the index takes into account both the processing profit and
the non-completion penalty. We note that the Whittle’s index
gives higher priority to jobs with less laxity. Here, the laxity
of job i is defined asLi[t] , Ti[t]−Bi[t] (cf. Fig. 1).

Given the definition of Whittle’s index, the Whittle’s index
policy for the deadline scheduling problem is stated as
follows.

Definition 3 (Whittle’s index policy):For the RMAB
problem defined in (5), the Whittle’s index policy sorts all
arms by their Whittle’s indices in a descending order and
activates the firstM arms.

Since the states of jobs and processing cost are finite,
the Whittle’s index can be computed off-line. In real-time
scheduling, at the beginning of each time slot, the scheduler
looks up the indices for each job and processes the ones with
highest indices. When there is a tie, the scheduler breaks the
tie randomly with a uniform distribution.

IV. A SYMPTOTIC OPTIMALITY

We note that the Whittle’s index policy is not optimal in
general. Indeed, counterexamples show that there does not
exist an optimalindex policythat schedules jobs according
to the order of jobs’ indices that are computed based on
jobs’ current states [24]. In the following theorem, for the
Whittle’s index policy, we establish an upper bound on the

gap-to-optimality as a function ofM , the maximum number
of available processors.

Theorem 1:Let G(s) be the value function achieved by
the optimal scheduler defined in (4) andGRMAB(s) be that
by the Whittle’s index policy, respectively. We have

G(s)−GRMAB(s) ≤
C

1− β
E[I[t]|I[t] > M ]Pr(I[t] > M),

(9)
whereI[t] is the number of jobs ever in the queue within
time [t− T̄ +1, t], T̄ the maximum lead time of jobs, andC
a constant determined by the processing cost and the penalty
of non-completion.

Proof: The proof can be found in Appendix D of [24].

When the traffic is heavy and the processing limit gets
tighter, the gap-to-optimality is bounded by the event of the
arrival exceeding the processing capacity. In finance area,the
conditional expectation in the right hand side (RHS) of (9)
is connected to the conditional value at risk (CVaR) [25].
CVaR measures the expected losses at some risk level and
is extremely important in the risk management.

We now apply Theorem 1 to gain insights by considering
special distributions (on the arrival process) of practical
significance.

Proposition 1: 1. SupposeI(t) follows a Poisson dis-
tribution with meanλ, then

G(s) −GRMAB(s) ≤
C

1− β

λM+1e−λ(M + 1)

(M + 1− λ)M !
. (10)

Specially, ifλ = Mθ, θ < 1, the right hand side of (10)
decreases supper exponentially to zero asM increases.

2. SupposeI(t) follows a Binomial distribution with mean
Np < M , then

G(s)−GRMAB(s) ≤
C

1− β

N !M2pM (1− p)N−M+1

M !(N −M)!(M −Np)
.

(11)
Specially, if the processing capacity grows faster than
the average arrival rate,i.e., M = αN for α ∈ (p, 1),
then the right hand side (RHS) of (11) decreases sub-
exponentially to zero asM increases.
Proof: The proof can be found in Appendix E of [24].

We note that Proposition 1 characterizes the asymptotic
optimality of Whittle’s index policy when the arrival of jobs
and the processing capacity grow simultaneously while the
overall system remains stable.

V. NUMERICAL RESULTS

In this section, results of numerical experiments are pre-
sented to compare the performance of the Whittle’s index
policy with other simple heuristic (index) policies,i.e., EDF
(earliest deadline first) [9] and LLF (least laxity first) [10].

If feasible, EDF processesM jobs with the earliest dead-
lines, and LLF processesM jobs with the least laxity. Both
policies will fully utilize the processing capacity and activate
M jobs as long as there are at leastM unfinished jobs in the
system. The Whittle’s index policy, on the other hand, ranks



5

2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

900

 

 

M

G(s) − GRMAB(s)

G(s) − GEDF(s)

G(s) − GLLF (s)

Bound in (10)

To
ta

l
re

w
a

rd
s

di
ffe

re
nc

e

Fig. 2. Comparison of the total rewards achieved by three different index
policies under dynamic processing cost:Q(0, 0) = 0.3, T̄ = 12, B̄ = 9,
β = 0.999, F (B) = 0.2B2, θ = 0.999, N = 1000.

all positions by the Whittle’s index and activates the firstM

arms, and may put some (regular) positions idle (deactivated)
when the processing cost is high.

In Figure 2, simulation results are presented to compare
the performance achieved by various heuristic policies andto
validate the theoretic results established in Proposition1. The
arrival sequence within̄T time slots follows a Poisson pro-
cess with meanM0.999. We fix the queue sizeN = 1000 and
vary the processing capacityM as a parameter. The dynamic
cost evolves according to a Markovian model that is trained
using real-time electricity price signals from the California
Independent System Operator (CAISO) (cf. Sections III and
V of [26]). Each time slot of the constructed Markov chain
lasts for 1 hour and the entire simulation horizon lasts for
300 days (with24× 300 time slots).

The EDF and LLF policies do not take into account the
dynamics of processing costs, and their gap-to-optimality
increases as both the job arrival rate and processing capacity
grow. On the other hand, the gap between the total rewards
achieved by the Whittle’s index policy and the optimal policy
quickly decreases to zero as the system scales.

VI. CONCLUSION

We considered the problem of large scale deadline
scheduling—a problem that has wide applications in call
centers, cloud computing, and EV charging. In such settings,
it is essential to develop efficient on-line scheduling algo-
rithms. To this end, the index policy proposed in this paper
is attractive for its implementation simplicity, versatility in
incorporating various operation uncertainties, and asymptotic
optimality.

REFERENCES

[1] Z. Yu, Y. Xu, and L. Tong, “Large scale charging of electric vehi-
cles: A multi-armed bandit approach,” in2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton).
IEEE, 2015, pp. 389–395.

[2] Z. Yu, S. Chen, and L. Tong, “An intelligent energy management
system for large-scale charging of electric vehicles,”CSEE Journal of
Power and Energy Systems, vol. 2, no. 1, pp. 47–53, 2016.

[3] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
“A queuing theory model for cloud computing,”The Journal of
Supercomputing, vol. 69, no. 1, pp. 492–507, 2014.

[4] B. B. Chen and P. V.-B. Primet, “Scheduling deadline-constrained
bulk data transfers to minimize network congestion,” inSeventh
IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’07). IEEE, 2007, pp. 410–417.

[5] J. Błażewicz, “Selected topics in scheduling theory,”North-Holland
Mathematics Studies, vol. 132, pp. 1–59, 1987.

[6] J. Dai and S. He, “Queues in service systems: Customer abandonment
and diffusion approximations,”Tutorials in Operations Research,
INFORMS: Hanover, MD, pp. 36–59, 2011.

[7] J. C. Gittins, “Bandit Processes and Dynamic AllocationIndices,”
Journal of the Royal Statistical Society, vol. 41, no. 2, pp. 148–177,
1979.

[8] P. Whittle, “Restless bandits: Activity allocation in achanging world,”
Journal of applied probability, pp. 287–298, 1988.

[9] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,”Journal of ACM, vol. 20,
pp. 46–61, 1973.

[10] M. Dertouzos, “Control robotics: the procedural control of physical
processes,” inProceedings of International Federation for Information
Processing Congress, 1974, pp. 807–813.

[11] A. Mok, “Fundamental design problmes of distributed systems for the
hard real-time environment,” Ph.D. dissertation, MIT, 1983.

[12] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,”ACM Computing Surveys, vol. 43, no. 4,
2011.

[13] M. L. Dertouzos and A. K. Mok, “Multiprocessor online scheduling
of hard-real-time tasks,”IEEE Transactions on Software Engineering,
vol. 5, pp. 1497–1506, 1989.

[14] S. S. Panwar, D. Towsley, and J. K. Wolf, “Optimal Scheduling Poli-
cies for a class of Queues with Customer Deadlines to the Beginning
of Service,”Journal of Association for Computing Machinery, vol. 35,
no. 4, pp. 832–844, October 1988.

[15] D. Towsley and S. Panwar, “On the Optimality of Minimum Laxity
and Earliest Deadline Scheduling for Real-Time Multiprocessors,” in
Proceedings of IEEE Euromicro 90’ Workshop on Real-Time, Jun.
1990, pp. 17–24.

[16] J. Lehoczky, “Real-time queueing theory,” inProceedings of 17th
IEEE Real-Time Systems Symposium, Dec. 1996, pp. 186 –195.

[17] B. Doytchinov, J. Lehoczky, and S. Shreve, “Real-time queues in heavy
traffic with earliest-deadline-first queue discipline,”Annals of Applied
Probability, vol. 11, no. 2, pp. 332–378, 2011.

[18] L. Kruk, J. Lehoczky, K. Ramanan, and S. Shreve, “Heavy traffic anal-
ysis for EDF queues with reneging,”Annals of Applied Probability,
vol. 21, no. 2, pp. 484–545, 2011.

[19] P. P. Bhattacharya, L. Tassiulas, and A. Ephremides, “Optimal schedul-
ing with deadline constraints in tree networks,”IEEE Transactions on
Automatic Control, vol. 42, no. 12, pp. 1703–1705, 1997.

[20] V. Raghunathan, V. Borkar, M. Cao, and P. R. Kumar, “Index policies
for real-time multicast scheduling for wireless broadcastsystems,” in
INFOCOM 2008. The 27th Conference on Computer Communications.
IEEE. IEEE, 2008.

[21] P. K. Dutta, “What do discounted optima converge to?: A theory of
discount rate asymptotics in economic models,”Journal of Economic
Theory, vol. 55, no. 1, pp. 64–94, 1991.

[22] E. Altman,Constrained Markov decision processes. CRC Press, 1999,
vol. 7.

[23] J. Niño-Mora, “Characterization and computation of restless bandit
marginal productivity indices,” inProceedings of the 2nd international
conference on Performance evaluation methodologies and tools. ICST
(Institute for Computer Sciences, Social-Informatics andTelecommu-
nications Engineering), 2007, p. 74.

[24] Z. Yu, Y. Xu, and L. Tong, “Deadline Scheduling as Restless Bandits,”
2016, available on arXiv.

[25] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-
at-risk,” Journal of risk, vol. 2, pp. 21–42, 2000.

[26] S. Kwon, Y. Xu, and N. Gautam, “Meeting inelastic demandin systems
with storage and renewable sources,”IEEE Tranactions on Smart Grid,
2015.


	Introduction
	Summary of results
	Related Work

	Problem Formulation
	Stochastic Deadline Scheduling as a Constrained MDP
	State Space
	Action
	State Evolution
	Reward
	Objective
	Constrained MDP and Optimal Policies

	An RMAB Problem

	Whittle's Index Policy
	Indexability
	Whittle's Index Policy

	Asymptotic optimality
	Numerical Results
	Conclusion
	References

